
Integrating Relational Reinforcement Learning with
Reasoning about Actions and Change?

Matthias Nickles

Department of Computer Science, Technical University of Munich
Boltzmannstr.3, D-85748 Garching, Germany, nickles@cs.tum.edu

1 Introduction and related works
We present an approach to the integration of Relational Reinforcement Learning (RRL)
[1, 4, 10] with the Event Calculus (EC) [2], focussing on the combination of statistical
learning and automated planning. Our framework allows for the formal specification
of background knowledge, soft and hard policies, and rewards for the Reinforcement
Learning (RL) task, and facilitates the constraining of the learning process by means
of rich sub-policies and abductively generated plans. A new algorithm for relational
instance-based regression is proposed which improves learning results in certain im-
portant use cases.
We are not aware of other approaches to the integration of RRL with the EC. However,
several related approaches exist. In [15] a simulator of the environment is employed as
a stochastic sample generator for RRL. However, this learning approach is goal-based
and does not approximate a value function as in our case but learns policy represen-
tations. [5] proposes an approach where the performance of Relational Q-Learning is
improved at runtime with plans generated using learned probabilistic models of the en-
vironment. [8, 13, 14] integrate RL with programs in the Golog action language (based
on the Situation Calculus). [7, 6] provide logical formalism for the representation of
MDPs. Various (rather remotely related) approaches combine planning with learning,
e.g., [9]. [16] uses a temporal logic approach to temporally-extend rewards in RRL.
[12] shows how EC programs can be learned from observations using Inductive Logic
programming. In contrast, we do not learn EC programs but employ them for learning.

2 The Event Calculus
The EC and its cousin, the Situation Calculus, are popular, effective and easily imple-
mentable first-order calculi for reasoning about actions and their effects in dynamic
systems. The EC defines a certain first-order language (with reified fluents) from which
only the following is required to understand most of this paper.
holdsAt(f, t) specifies that fluent f is true at time point t.
happens(e, t) specifies that action (event) e occurs at time point t.
Time points are discrete and can refer to the past, the present, and the future.

A blocks world: As a running example, we make use of the well-known blocks world
(BW), which is arguably the by far most frequently used domain in the context of RRL
and other types of Statistical Relational Learning. The BW is also a classic planning do-
main. A BW is a relationally structured domain in which an agent observes and acts in a
sort of grid with discrete positions. At each position there can be a block (named with a
lower-case letter a, b, c, ...) or the table, or nothing. The fact that some block x is on top
of some other block y at some point in time t is expressed with holdsAt(on(x, y), t)
in the EC. holdsAt(on(x, table), t) means that block x is directly on the table at time
step t. holdsAt(clear(x), t) denotes that there is currently no block on top of block

? Preliminary version, extended abstract

x. The agent acts in the BW by moving blocks using a ”stacking” action, conditioned
by certain pre- and post-conditions (e.g., both the moved block and the target of the
move need to be clear in beforehand). A stacking action at time t which moves block
x on top of block y is expressed with happens(stack(x, y), t). If the action succeeded,
subsequently holdsAt(on(x, y), t+ 1) holds.
For the purpose of this paper, the BW is considered to be fully observable for the learn-
ing agent. However, actions can have nondeterministic outcomes.

Reasoning with the EC: EC reasoning can take many concrete forms, including the use
of plain Prolog. In this work, we assume an EC reasoner which computes a finite set
of satisfying models of the agent’s EC program (knowledge base). In our experiments,
we have used Potassco (the Potsdam Answer Set Solving Collection)1 for this purpose,
i.e., a model is here in fact an answer set. For every time step ti, 0 ≤ i ≤ tmax, each of
the models consists of a number of ground facts, including the truth values of all fluents
and which action happens or might happen in the future. The reasoner thus provides us
with all or a subset of all alternative futures (possible worlds). In case of a deterministic
domain, the models are contingent only wrt. the agent’s actions. For nondeterministic
domains, they may also comprise uncertain outcomes of actions.

Nondeterministic domains: We can use the EC to specify nondeterministic block
worlds, which is of course particularly relevant in the context of RL. There are vari-
ous approaches to nondeterminism using the EC. In the following example, we make
the result of an agent’s stacking action determined by the random outcome of a coin
flip. In case of ”heads”, the stacking action fails and the block lands on the table. The
coin flip is modeled using a so-called ”determining fluent”:
initiates(stack(X,Y),on(X,table),T) :- holdsAt(determFluent(heads), T).

initiates(stack(X,Y),on(X,Y),T) :- holdsAt(determFluent(tails), T).

Such nondeterministic rules indirectly induce a probability distribution over the truth
values of fluents. E.g., given the rules above and the occurrence of action stack(a, b)
at time t, the probability that holdsAt(on(a, b), t+1) is part of a satisfying model is 0.5.

Automated planning Using the EC, we can provide the learning agent with semanti-
cally rich first-order state descriptions and an exploration policy. While the specifica-
tion of background knowledge and policies in the EC is straightforward, we need to say
more about planning. Planning using the EC is typically achieved using abduction. The
planning goal can be specified in the agent’s knowledge base by means of a statement
like notnotholdsAt(goal, tmax) for some future time tmax. Also the initial state is
specified, corresponding to time step 0. The EC reasoner computes a number of models
which each comprises both the initial and the goal state, and a number of actions which
lead from the former state to the latter state, i.e., a plan. A minimal plan can be found
by an incremental decrease of tmax until the knowledge base becomes unsatisfiable.

3 Relational Reinforcement Learning
RRL differs from ordinary RL in that it uses a relational representation for Markov
states and actions, and thus allows for a natural representation of complex domains
whose rich structural properties would otherwise be inaccessible to RL. Various ap-
proaches to RRL exist.

Definition 1 (Relational Reinforcement Learning) Let
– S be a set of states, represented in a relational format (e.g., logically),
– A be a set of actions, represented in a relational format (e.g., logically),
– T : S ×A× S → [0; 1] be a stochastic state transition function,

1 http://potassco.sourceforge.net/

– R : S ×A→ R be a real-valued reward function.

The agent’s goal is to learn an action policy π : S → A ∈ [0; 1] that maximizes
the discounted return Rt =

∑∞
k=0 γ

krt+k+1 from any time step t. This return is the
cumulative reward obtained in the future, starting from state st. Future rewards are
weakened by some discount factor γk ∈ [0; 1]. R is approximated using a Q-value
function Q : S ×A→ R such that Q(s, a) = E(Rt|st = s, at = a).

4 RRL with a EC reasoner as a model generator
Markov states are associated now with time points in the EC-sense, and the state cor-
responding to a certain time point t comprises information about which fluents and ac-
tions are holding/happening at that time according to the agent’s dynamically updated
knowledge base KB. When the agent has performed an action or observed a state, KB
is updated accordingly. In the following, the set of truth values of fluents at time t is
denoted as Fluentst(KB), the set of possible actions at the subsequent time t + 1 is
denoted as dact(KB, t+ 1) . This approach provides the following key benefits:

Seamless integration with planning An expert can provide logically represented goals
for planning and logically represented goals or rewards for learning within the same
specification. The EC-reasoner can also be employed for the deductive or abductive
computation of examples for instance-based learning.

Provision of possible ”futures” The EC-reasoner computes the set of logically possi-
ble actions in the subsequent time step as well as deterministic and nondetermin-
istic state transitions. If the maximum set of models provided by the reasoner is
incomplete (and thus faster to compute), the EC reasoner approaches a stochastic
state/action sample generator.

Convenient formal domain description and formal specification of sub-policies, agent
decision making and rewards, including (non-Markovian) rewards spawning mul-
tiple time steps [16], as outlined below.

Apart from the straightforward use for the domain specification (e.g., modeling the
action pre- and post-conditions for the blocks word), another important use case for our
framework is the combined specification of sub-policies, planning goals and rewards
(contingent on the truth values of fluents). A few very simple examples (required rules
for BW domain specification and further background knowledge are omitted for lack of
space):
holdsAt(reward(1),T) :- holdsAt(on(a,b),T), holdsAt(on(a,table),T-2).

holdsAt(reward(1),T) :- holdsAt(on(a,b),T), holdsAt(on(b,table),T-2).

holdsAt(reward(1),T) :- holdsAt(on(a,b),T), holdsAt(on(c,table),T-2).

holdsAt(reward(0),T) :- not holdsAt(on(a,b),T).

holdsAt(reward(0),T) :- not holdsAt(on(a,table),T-2), not holdsAt(on(b,table),T-2),

not holdsAt(on(c,table),T-2).

happens(stack(b,a),7) | happens(stack(b,table),7) | happens(stack(b,table),8).

not not happens(stack(a,b),20). A planning goal
holdsAt(actionWeight(100), T) :- happens(stack(b,c),T). A hard action constraint, cf. below
holdsAt(actionWeight(0), T) :- not happens(stack(b,c),T).

Definition 2 (RRL-EC) Let
– A, T , R as in standard RRL,
– n ∈ N be a finite temporal reasoning horizon,
– KB = {KBi : 1 ≤ i ≤ n} be the set of knowledge bases (EC programs) at time

points ≤ n. After each agent action and observation, an update of KBi to KBi+1

takes place in order to include this action and observation. Note that in the EC, each
KBi spawns all time steps, not just time i.

– S be the set of possible states, consisting of sets of those fluents which hold at time t
(minus special-purpose fluents such as reward and actionWeight). For the current
time step t a state is observable and can be computed from KBt using function
Fluents : KB × N→ S.

– δ : KB × A → KB be a knowledge base update function which updates the
learning agent’s knowledge base KBt to its successor KBt+1 after a new event
(action) has occurred.

– π : KB × S × N→ A be a Q/KB-optimal policy with

π(KBt, st, t) = argmaxa∈dact(KBt,t+1)(Q(st, a)actionWeight(t+ 1, a)) (1)

using a Q-value function as specified above and a constraining function dact :
KB × t→ 2A which results in the set of actions which are logically possible (ac-
cording to KBt) at time point t+ 1 (i.e., one step in the future).
actionWeight(t, action) denotes that action a has a certain weight at time t.
actionWeight can be used to provide soft policies (i.e., default policies which are
overridable where values of the respective state/action-pairs become sufficiently
large). It is obtained at runtime from an eponymous fluent (see Algorithm 1). In-
stead of argmax, a Boltzmann-softmax could optionally be used, in order to foster
exploration.

The following algorithms can be seen as instances of the incremental Temporal Dif-
ference RRL algorithms introduced in [11] and SARSA, but with the provision that
the set of possible states, the set of actions possible in each state and the rewards are
obtained deductively/abductively from an incrementally updated EC knowledge base.
The first algorithm uses regression (Relational Instance-Based learning) to predict the
values of unseen examples:

Algorithm 1 (RRL-RIB-TD-EC)

Require: State/action space (fragmentary), knowledge baseKB1, policy function π, action con-
straining function dact, state determination function Fluents, regression system for QRIB

(see below), discount factor γ
Ensure: Approximation of QRIB

loop
specify start state st = Fluents(KB1, 1), t = 0
a← π(KBt, st, t)
repeat

Perform action a,
KBt+1 ← δ(KBt, a),
st+1 = Fluents(KBt+1, t+ 1),
Get reward r :⇔ KBt+1 |= holdsAt(Reward(r), t+ 1)
Get weights of possible subsequent actions:

actionWeight(t+ 1, action) = wj

:⇔ KBt+1 ∧ happens(action, t+ 1) |= holdsAt(actionWeight(wj), t+ 1)
ā← π(KBt+1, st+1, t+ 1)
if t ≤ n then
QRIB(st, a)← r + γQRIB(st+1, ā) (learn)

else
QRIB(st, a)← r (learn)

end if
t← t+ 1, a← ā

until t = n
end loop

This algorithm requires an instance-based regression mechanism QRIB which pro-
vides value predictions for learning examples which are not in memory yet. This could
be one of the previously introduced RIB systems [4, 11], or the following new approach

using a planning (pseudo-)distance QRIB−Plan. Like the RIB approach presented in
[4],QRIB−Plan is for unseen examples (s, a) calculated using a ”relational” k-nearest-
neighbor estimation as follows. (s̄, ā) denotes examples whose values are already in
memory:

QRIB−Plan(s, a) =

∑
s̄,ā

QRIB−Plan(s̄,ā)
dP ((s,a),(s̄,ā))∑

s̄,ā
1

dP ((s,a),(s̄,ā))

(2)

with dP ((s, a), (s̄, ā)) =
argmintgoal−t(|= s∧happens(a, t+1)∧happens(a2, t+2)∧...∧s̄∧happens(ā, tgoal)),
i.e., the path length of the shortest possible plan which leads from s updated with action
a to s̄ updated with action ā.
Clearly, dP is in general not a real distance, if because we cannot guarantee for arbitrary
domains that any given plan could be executed backwards (i.e., dP is not symmetric).
Benefits compared to those relational distance metrics which have been used with RRL
before is that QRIB−Plan does neither require goals nor syntactic action inspection,
and that it can immediately be used with other domains than BW without adaptation.
It is also much simpler than kernel-based relational distances. However, a shortcoming
of QRIB−Plan is the relatively long time required for each distance calculation due to
frequent costly invocations of the reasoner. We nevertheless obtained favorable experi-
mental results using a small modification of QRIB−Plan (cf. Section 5).

Algorithm 2 (RRL-TD-EC) is as RRL-RIB-TD-EC, but instead of regression,QRIB(st, a)
yields a constant default value (e.g., 0) in case of unseen learning examples.

Algorithms 3/4 (RIB/RRL-Q-EC) is as RRL-RIB-TD-EC respectively RRL-TD-EC,
except that standard offline Q-learning with a variant of the Bellman equation which
accounts for nondeterministic domains is being used. For lack of space, these algorithms
are omitted here.

5 Empirical evaluation
Our learning framework is fully implemented. In the following, some experimental find-
ings are reported. Further empirical results and a more detailed analysis can be found
in the full version of this paper.

The black (square-decorated) curves in Figure 1 show the averaged performance
of algorithm RRL-RIB-TD-EC and QRIB−Plan as regression system for learning how
to stack all blocks in a deterministic BW with five blocks on top of each other. Each
episode starts with a new random state of the blocks world. Reward is given only for
reaching the goal, which aborts the respective episode. In this example. the goal is only
used to calculate rewards, not for regression or EC reasoning. While the matching/edit
distance metrics used in [4] (and which is based on the general distance proposed in
[3]) makes a compact and generalized value function possible, given a reduced inflow
of learning examples, it is not reasonably applicable in our targeted setting (no goal use
and no symbolic action examination in the regression computation, unlimited example
inflow). We performed two trials with 300 episodes each. To minimize the number of
costly invocations of the reasoner, plan distances are computed only in case the Q-value
of the respective second learning example in memory ((s̄, ā) in equation (2)) is outside
of a certain insignificance interval (initially [0.4, 0.8]), which is enlarged by a small
factor after each distance calculation. For this experiment, a reduced set of EC axioms
has been used and the set of possible actions at each time step has been computed with-
out the reasoner, just in order to reduce computation time. The red (triangle-decorated)
curves show the results for the same setting but without regression. While from about
episode 130 on both curves begin to converge, the regression mechanism shows a signif-
icance improvement of learning performance up to this point, due to effective provision
of predictions in place of missing examples. We expect this effect to be in particular

0 33 67 100 133 167 200 233 267 300
 0

 5

10

Episodes

S
te

ps
 r

eq
ui

re
d

Exp_Stacking_Ds5Rgr6DetMtime10Mmodels1LocaTdlGreedyPredll0

Exp_Stacking_Ds5NorgrDetMtime10Mmodels1LocaTdlGreedy_06091832

(a) Number of time steps until reward

0 33 67 100 133 167 200 233 267 300
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Episodes

R
ew

ar
d

su
m

s

Exp_Stacking_Ds5Rgr6DetMtime10Mmodels1LocaTdlGreedyPredll0

Exp_Stacking_Ds5NorgrDetMtime10Mmodels1LocaTdlGreedy_06091832

(b) Reward sums (moving average)

Fig. 1. RIB with planning distance

relevant for applications where it is important to see a learning success after a small
number of episodes whereas the absolute time required for each episode is of minor
importance (e.g., learning in human/computer interaction scenarios).

References

1. S. Dzeroski, L. De Raedt, H. Blockeel: Relational reinforcement learning. Procs ICML’98.
Morgan Kaufmann, 1998.

2. R. Kowalski, M. Sergot: A Logic-Based Calculus of Events. In New Generation Computing
4: 6795, 1986.

3. J. Ramon, M. Bruynooghe: A polynomial time computable metric between point sets. Acta
Informatica, 37:765780, 2001.

4. K. Driessens: Relational Reinforcement Learning. PhD thesis, Department of Computer Sci-
ence, Katholieke Universiteit Leuven, 2004.

5. T. Croonenborghs, J. Ramon, M. Bruynooghe: Towards informed reinforcement learning.
Procs. of the Workshop on Relational Reinforcement Learning at ICML’04, 2004.

6. K. Kersting, L. De Raedt: Logical Markov decision programs. Procs. IJCAI’03 Workshop
on Learning Statistical Models of Relational Data, 2003.

7. C. Boutilier, R. Reiter, B. Price: Symbolic dynamic programming for First-order MDP’s.
Procs. IJCAI-01, Morgan Kaufmann Publishers, 2001.

8. I.A. Letia, D. Precup: Developing collaborative Golog agents by reinforcement learning.
Procs. ICTAI’01. IEEE Computer Society, 2001.

9. D. Bryce: POND: The Partially-Observable and Non-Deterministic Planner. Notes on The
5th International Planning Competition at ICAPS’06, 2006.

10. M. Van Otterlo: A Survey of RL in Relational Domains, CTIT Technical Report Series, 2005.
11. C. Rodrigues, P. Gerard, C. Rouveirol: Relational TD Reinforcement Learning. Procs.

EWRL’08, 2008
12. S. Moyle, S. Muggleton: Learning Programs in the Event Calculus. Lecture Notes in Com-

puter Science, Springer 1997.
13. A. Finzi, T. Lukasiewicz: Adaptive multi-agent programming in GTGolog. Procs of the 29th

Annual German Conference on Artificial Intelligence (KI 2006), 2006.
14. D. Beck, G. Lakemeyer: Reinforcement Learning for Golog Programs. Procs. Workshop on

Relational Approaches to Knowledge Representation and Learning, 2009.
15. A. Fern, S. Yoon, R. Givan: Reinforcement Learning in Relational Domains: A Policy-

Language Approach. In L. Getoor, B. Taskar, eds. Introduction to Statistical Relational
Learning. MIT Press, 2007.

16. C. Gretton: Gradient-Based Relational Reinforcement-Learning of Temporally Extended
Policies. International Conference on Automated Planning and Scheduling (ICAPS’07),
2007.

