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Abstract. The ILP system Progol is incomplete in not being able to
derive a multi-clause hypothesis from an example. However, due to the
assumption that a multi-clause hypothesis can be built by sequentially
adding single clauses, Progol’s incompleteness does not stop it being
applied to real-world applications. This paper uses two real-world ap-
plications in systems biology to study whether a complete multi-clause
learning method MC-TopLog can make a difference to learning results
compared to the single-clause learning method Progol5. The experimen-
tal results show that in both applications there exist data sets, in which
hypotheses derived by MC-TopLog have higher predictive accuracies, as
well as better biological significance than those of Progol5.

1 Introduction

Yamamoto [12] first pointed out that Progol’s inverse entailment [3] is incom-
plete, which means Progol can only derive hypotheses with a single clause, but
not with multiple clauses from an example. The learning of the concept of odd-
numbers was used as a counter example by Yamamoto to demonstrate Progol’s
incompleteness. However, his example contains a number of particular facets,
such as mutual recursion. In this paper we investigate whether the form of in-
completeness studied by Yamamoto significantly affects learning performance in
two real-world applications. Neither application involves mutual recursion, and
although the background knowledge is recursive in both cases, the hypothesis
space consists of ground facts. In such a case one might imagine that it should be
possible to always build up the hypothesis sequentially by adding single facts to
explain individual examples. For example, a network of food webs, whose logical
description consists of multiple clauses, can be constructed from scratch using
Progol5 [4], as shown in [10].

Although other multi-clause learning methods have been applied to real-
world domains [8] [13], where there are no mutual recursion, no direct com-
parison to an single-clause learning method has been made using experiments.
Therefore, it is still unclear whether the assumption that single-clause learners
can perform as good as multi-clause learners by sequentially constructing each
clause in a multi-clause hypothesis is still valid in applications like those studied
in [8] and [13]. The experiments in this paper, where direct comparisons between
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MC-TopLog and Progol5 were made using the same data sets, demonstrate that a
complete multi-clause learning method can significantly improve learning results
of certain real-world problems, compared to a single-clause learning method.

The two real-world applications studied in this paper are tomato and pre-
dictive toxicology applications. Both come from Syngenta [1], which is a world
leading agribusiness supplying crop protection and genetic solutions to growers.
These two applications were also used in [5] to study how the variation of the
background knowledge affects learning results.

Developing new varieties of tomato is a major part of Syngenta‘s vegetable
seed business. The tomato application aims to identify new molecular-genetic
targets that play a role in controlling tomato ripening and fruit quality. The
output of this project aims to increase the efficiency of breeding selection pro-
cesses, resulting in new tomato varieties optimised for shelf life and quality.

The predictive toxicology application is important to the sector of crop pro-
tection at Syngenta, since an assessment of the potential to cause cancer is a
key component in the risk assessment of a new crop protection active ingredient.
The objective of the predictive toxicology application is to devise a predictive
model describing xenobiotic-induced alterations in metabolism in the rat that
underlie tumour promoting activity. This model will direct experimental design
and choices to reduce the cost and number of experiments needed to predict
toxicological end points from a range of chemistries.

The rest of the paper will describe ILP models of the two applications first,
and then explain the definition of multi-clause learning in the context of the
applications. Finally, the experimental results are presented.

2 ILP Models for Tomato and Predictive Toxicology
Applications

The abstract models of tomato and predictive toxicology applications are simi-
lar, although their underlying biological processes are different. In both applica-
tions, changes in the metabolite abundances are observed in the treated group
compared to the control group. In the tomato application, the treated groups
are ripening mutants, such as colourless non-ripening (CNR), ripening-inhibitor
(RIN) and non-ripening (NOR); in the predictive toxicology application, the
treated groups are Fischer F344 rats treated with different doses of phenobarbi-
tal (a non-genotoxic liver carcinogen). The observed changes in the metabolite
abundances are classified into up, down and no-change, and used as examples E.

The background knowledge B consists of: (1)The regulation rules about how
changes in reaction states affect metabolite abundances. (2) Metabolic network.
For tomato application, it is derived from LycoCyc database [2], while for the
predictive toxicology application, it is obtained from KEGG database [7]. (3)
Gene expression (transcript profiles). A longer version paper will provide details
about how to use the transcript information for constructing hypotheses. Fig. 1
shows a part of the background knowledge.
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Background Knowledge B:
(1) Regulation Rules (9 rules in total):
concentration(Metabolite1, up, T ime)←

produced by(Metabolite1,Reaction),
reactionState(Reaction, enzymeLimiting, cataIncreased,Time).

concentration(Metabolite1, down, T ime)←
consumed by(Metabolite1,Reaction),
reactionState(Reaction, enzymeLimiting, cataIncreased,Time).

concentration(Metabolite1, up, T ime)←
produced by(Metabolite1,Reaction),
reactionState(Reaction, substrateLimiting, ,Time),
consumed by(Metabolite2,Reaction),
concentration(Metabolite2,up,Time).

(2) Metabolic Network:
consumed by(glutamate,‘L-GLU:L-CYS γ-LIGASE’).
produced by(γ–glutamylcysteine,‘L-GLU:L-CYS γ-LIGASE’).
catalyzed by(‘L-GLU:L-CYS γ-LIGASE’, ‘glutamate–cysteine ligase’).
part of catalysing class(‘glutamate–cysteine ligase’,‘E.C.6.3.2.2’).
(3) Gene Expression Data:
concentration e(‘E.C.6.3.2.2’,up,day14). concentration e(‘E.C.6.3.2.3’,up,day14).
Examples E:
e1: concentration(glutathione,up,day14). e2: concentration(5–oxoproline,up,day14).
Candidate Hypothesis Clauses:
h1: reaction state(‘γ-L-GLU-L-CYS:GLY LIGASE’, substrateLimiting, , day14 ).
h2: reaction state(‘5-GLUTAMYLTRANSFERASE’, substrateLimiting, , day14 ).
h3: reaction state(‘L-GLU:L-CYS γ-LIGASE’, enzymeLimiting, cataIncreased, day14 ).

(a) Predictive Toxicology Application

Examples: e4: concentration(citrate,down,‘NOR Late’). e5: concentration(malate,up,‘NOR Late’).
Candidate Hypothesis Clauses:
h4: reaction state(‘CITSYN-RXN’, enzymeLimiting, cataIncreased, ‘NOR Late’).
h5: reaction state(‘MALATE-DEH-RXN’, substrateLimiting, , ‘NOR Late’).
h6: reaction state(‘ACONITATE-DEHYDR-RXN’, enzymeLimiting, cataDecreased, ‘NOR Late’).

(b) Tomato Application
Fig. 1: ILP Models

To explain examples E, we need to hypothesise changes in reaction states,
which are not observable. Reaction states can be classified as enzyme limiting or
substrate limiting. Enzyme limiting implies that the flux through the reaction is
controlled by the activity of the catalysing enzyme that can either be catalyti-
cally increased, decreased or no-change. Similarly, substrate limiting means the
flux through the reaction is determined by the abundance of substrates that can
be observed either as up, down or no-change.

3 Multi-clause Learning

Progol’s incompleteness can be characterised by single-clause learning, because
Progol can only derive a single-clause hypothesis that subsumes an example e
relative to B in Plotkin’s sense. More details of multi-clause learning vs. single-
clause learning can be found in [6].

In the context of the two applications studied in this paper, deriving a multi-
clause hypothesis means hypothesising multiple reaction states. Fig. 2(1) gives
an example of a multi-clause hypothesis H1 from the predictive toxicology appli-
cation. H1 consists of the three clauses h1, h2 and h3 in Fig. 1(a), and it explains
e1 as well as e2. Specifically, both reactions ‘γ-L-GLU-L-CYS:GLY LIGASE’
and ‘5-GLUTAMYLTRANSFERASE’ are hypothesised to be substrate limit-
ing, thus flux through them depends on the abundance of their common sub-
strate γ-glutamylcysteine. While the reaction ‘L-GLU:L-CYS γ-LIGASE’ that
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Fig. 2: Hypothesis Visualization. A reaction arrow is grey if it is not hypothesised, oth-
erwise, it is coloured red, green or black to represent catalytically increased, decreased
and substrate limiting reaction states, respectively. Metabolite abundance and gene
expression (small squares beside the reaction arrows) are coloured red, green and black
to represent up, down and no-change, respectively.

produces γ-glutamylcysteine is hypothesised as enzyme limiting and catalyti-
cally increased, which means the enzyme catalysing ‘L-GLU:L-CYS γ-LIGASE’
regulates the abundance of glutathione and 5-oxoproline both. This hypothesis
is indeed consistent with that in [11]. However, such a multi-clause hypothesis
can not be derived by a single-clause learner like Progol5, unless the abundance
of γ-glutamylcysteine is available1, while that is practically immeasurable due to
technological limitations. Another multi-clause hypothesis H2a={h4, h5} (where
h4 and h5 are in Fig. 1(b)) is shown in Fig. 2(2)(a). This hypothesis is possible
to be derived by a single-clause learner. Specifically, the single clause h4 can be
derived from the example e4. After h4 is added to the background knowledge,
another clause h5 can be derived from the example e5. Despite the fact that H2a

can be sequentially constructed using Progol5, Progol5 does not necessarily sug-
gest this hypothesis, but instead hypothesises H2b={h6} shown in Fig. 2(2)(b).

4 Experiments

Two independent experiments were conducted to empirically investigate the null
hypothesis: multi-clause learning does not outperform single-clause learning.

Materials In the tomato application, transcript and metabolite profiles for
three developmental stages (Early, Mid and Late) were obtained for wild type
and three mutants (CNR, RIN, NOR) from Syngenta. This gave nine data sets in
total (3 stages x 3 mutants). In the cancer application, transcript and metabolite
profiles were obtained for 1, 3, 7 and 14 days post treatment, which were from
a published study [11]. All the materials used in the experiments can be found
at http://ilp.doc.ic.ac.uk/mcTopLog.

1 Suppose concentration(γ–glutamylcysteine, up, day14) exists as an example e3,
then a single-clause learner can sequentially derive each clause in H respectively
from e1, e2 and e3.
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Methods Progol5 and MC-TopLog [6] were used to represent single-clause
learner and multi-clause learner, respectively. In the tomato application, leave-
one-out cross validation was used to compute the predictive accuracies due to
the availability of a limited set of abundance data (22 metabolites). However,
in the predictive toxicology application 10-fold cross validation was employed
as a larger set of metabolite abundance data (52 metabolites) was available.
The closed world assumption was applied during the testing phase to define an
un-hypothesised reaction state as substrate limiting.

Results The following two tables show the predictive accuracies of two ap-
plications using Progol5 and MC-TopLog. The accuracies of both Progol5 and
MC-TopLog are higher than default, which shows learning is effective. Com-
pared to Progol5, MC-TopLog suggested hypotheses with higher accuracies for
certain data sets. In the tomato application, there are five (CNR Mid, CNR Late,
NOR Mid, NOR Late, RIN Late) out of nine data sets, in which MC-TopLog’s
accuracies are significantly higher than that of Progol5 at the 95% confidence
level. While in the predictive toxicology application, only for the data at day
14 that MC-TopLog performs significantly better. Overall our null hypothesis
is rejected by the accuracy results: there exist cases where multi-clause learning
significantly outperforms single-clause learning.

Timepoint default(no change),% Progol,% MC-TopLog,% p-value

CNR Early 63.64 72.73±9.49 81.82±8.22 0.162

CNR Mid 36.36 36.36±10.26 77.27±8.93 0.001

CNR Late 40.90 54.55±10.62 86.36±7.32 0.005

NOR Early 86.36 86.36±7.32 86.36±7.32 1.000

NOR Mid 50.00 59.09±10.48 77.27±8.93 0.043

NOR Late 31.82 40.91±10.48 81.82±8.22 0.001

RIN Early 100.00 100±0.00 100.00±0.00 1.000

RIN Mid 90.91 90.91±6.13 90.91±6.13 1.000

RIN Late 36.36 45.45±10.62 81.82±8.22 0.002

Table 1: Predictive accuracies with standard errors in Tomato Application

Timepoint default(no change),% Progol,% MC-TopLog,% p-value

Day 1 55.0 75.00±6.06 78.0±5.74 0.7304

Day 3 30.6 56.66±6.87 59.00±6.82 0.5554

Day 7 40.6 60.33±6.78 66.00±6.57 0.4250

Day 14 48.0 50.33±6.93 68.00 ±6.47 0.0039

Table 2: Predictive accuracies with standard errors in Cancer Application

Hypothesis Interpretation Here we compare the hypotheses generated by
MC-TopLog and Progol5 by examining their biological significance from pub-
lished data. The example used here is a hypothesis around organic acids citrate
and malate, both of which are targets for improving fruit quality. Fig 2(2)(a)
depicts a multi-clause hypothesis derived by MC-TopLog. It suggests that the
enzyme catalysing the reaction ‘CITSYN-RXN’ (citrate synthase) regulates the
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abundance of citrate as well as malate. Different from MC-TopLog, Progol5 hy-
pothesises the enzyme aconitate hydratase to be the regulator of citrate abun-
dance, as shown in Fig 2(2)(b). From a biological perspective, both hypotheses
are plausible, and the role of both enzymes have not been functionally tested in
tomato fruit. However, the MC-TopLog hypothesis is supported by indirect evi-
dence [9], in which down regulated expression of citrate synthase in tomato leaves
influences the abundance of citrate and malate. Those plausible hypotheses with-
out current literature validation will be experimentally tested and validated by
biologists in a future study.

5 Conclusion

The two real-world applications studied in this paper do not involve recursive tar-
get hypotheses and mutually dependent predicates like Yamamoto’s odd–numbers
example. However, multi-clause learning still outperforms single-clause learning
in certain data sets of the two applications, as shown by the direct compar-
isons. Therefore, we conclude that there exist general classes of problems in the
real-world that benefit from complete multi-clause learning methods.
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