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Abstract. CF-induction is a sound and complete procedure for finding
hypotheses in full clausal theories. It is based on the principle of Inverse
Entailment (IE), and consists of two procedures: construction of a bridge
theory and generalization of it. There are two possible ways to realize
the generalization task in CF-induction. The one uses a single deductive
operator, called γ-operator, and the other uses a recently proposed form
of inverse subsumption. Whereas both are known to retain the complete-
ness of CF-induction, their favorite hypotheses, which tend to be found,
are different from each other. In this paper, we introduce those two gen-
eralization approaches in CF-induction, and then investigate their logical
relationship and features especially on each favorite hypotheses.
Keywords: inverse entailment, CF-induction, generalization, inverse sub-
sumption, γ-operator

1 Introduction

CF-induction [1] is one of the modern explanatory ILP methods based on the
principle of Inverse Entailment (IE) [4]. Given a background theory B and ex-
amples E, the task of explanatory induction is to find a hypothesis H such that
B ∧ H |= E and B ∧ H is consistent. This task is logically equivalent to find a
consistent hypothesis H such that B ∧ ¬E |= ¬H. Modern IE-based methods
then compute hypotheses in two steps: first constructing a bridge theory Fi and
next generalizing its negation into a hypothesis H, described as follows:

-

B ∧ ¬E |= F1 |= · · · |= Fi |= Fi+1 |= · · · |= Fn |= ¬H

(Generalization)

¬Fi =| ¬Fi+1 =| · · · =| ¬Fn =| H

Fig. 1. Hypothesis finding based on inverse entailment

We denote by =| the inverse relation of entailment, called anti-entailment.
CF-induction first computes some interesting consequences, called character-

istic clauses, of B∧¬E, which satisfy a given language bias and then constructs
a bridge theory, often denoted by CC. The bridge theory consists of ground
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instances from the characteristic clauses. After translating ¬CC into CNF, CF-
induction generalizes it to a hypothesis based on anti-entailment.

CF-induction ensures soundness and completeness of finding hypotheses in
full clausal theories. Compared with other IE-based methods [4, 5, 3, 6, 3, 7], it
has three important benefits [8]. Unlike Progol [4], HAIL [5] and Imparo [3], it
enables the solution of more complex problems in richer knowledge representa-
tion formalisms beyond Horn logic. Unlike FC-HAIL [6], it is complete for finding
full clausal hypotheses. Unlike the residue procedure [7], it can exploit language
bias to specify the search space to focus the procedure on some relevant part.

However, the generalization of CF-induction has to handle many highly non-
deterministic operators, like inverse resolution, to ensure the completeness in
the sense that it can find any hypothesis H such that ¬CC =| H. There are
two recent works [8, 9] that can be used to reduce the non-determinisms in gen-
eralization. The literature [8] focuses on the entailment relation CC |= ¬H for
a bridge theory CC and a ground hypothesis H. It shows that this relation
is logically simplified with a single deductive operator ⊢γ , called γ-operator,
which warrants the insertion of literals into the clauses of CC. The literature
[9] shows a technique to reduce the anti-entailment relation ¬CC =| H to the
anti-subsumption relation3 CC∗ ≼ H where CC∗ is a certain clausal theory
logically equivalent to ¬CC. Hence, there are two approaches for generalization
in CF-induction. Hereafter, we call the former (resp. the latter) downward (resp.
upward) generalization (See Fig. 2).

-

-
B ∧ ¬E |= · · · |= CC ⊢γ CC1 ⊢γ · · · ⊢γ CCn ⊢γ ¬H

(Upward generalization)

(Downward generalization)

CC∗ ≼ CC∗
1 ≼ · · · ≼ CC∗

n ≼ H

Fig. 2. Upward and downward generalization in CF-induction

Whereas both are known to retain the completeness of CF-induction, their
favorite hypotheses, which tend to be found, are different from each other. In this
paper, we introduce these two generalization approaches and investigate their
logical relationship and features especially on each favorite hypotheses. Due to
space limitations, full proofs are omitted.

2 Notion and terminology

Here, we review the notion and terminology in ILP [10]. A clause is a finite
disjunction of literals which is often identified with the set of its disjuncts. A
clause {A1, . . . , An,¬B1, . . . ,¬Bm}, where each Ai, Bj is an atom, is also written
as B1 ∧ · · · ∧ Bm ⊃ A1 ∨ · · · ∨ An. A Horn clause is a clause which contains at
most one positive literal; otherwise it is a non-Horn clause. It is known that a
clause is a tautology if it has two complementary literals. A clausal theory is a
3 We call the inverse of subsumption anti-subsumption, and denote it by ≼.
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finite set of clauses. A clausal theory is full if it contains at least one non-Horn
clause. A clausal theory S is often identified with the conjunction of its clauses
and is said to be in Conjunctive Normal Form (CNF).

Let C and D be two clauses. C subsumes D, denoted C ≽ D, if there is a
substitution θ such that Cθ ⊆ D. C properly subsumes D if C ≽ D but D ̸≽ C.
For a clausal theory S, µS denotes the set of clauses in S not properly subsumed
by any clause in S. Let S and T be clausal theories. S (theory-) subsumes T ,
denoted by S ≽ T , if for every C ∈ T , there is a clause D ∈ S such that C ≽ T .

When S is a clausal theory, the complement of S, denoted by S, is defined as a
clausal theory obtained by translating ¬S into CNF using a standard translation
procedure [10]. (In brief, S is obtained by converting ¬S into prenex conjunctive
normal form with standard equivalence-preserving operations and Skolemizing
it.) Note that the complement S may contain redundant clauses like tautologies
or subsumed ones. Especially, we call the clausal theory consisting of the non-
tautological clauses in µS the minimal complement of S, denoted by M(S).

We denote by |= the classical logical entailment relation. Let S and T be
clausal theories. S and T are (logically) equivalent, denoted by S ≡ T , if S |= T
and T |= S. For a clausal theory S, a consequence of S is a clause entailed by S.
We denote by Th(S) the set of all consequences of S. Note that µTh(S) denotes
the set of all subsumption-minimal consequences of S.

We give the definition of hypotheses in the logical setting of ILP as follows:

Definition 1 (Hypotheses). Let B and E be clausal theories, representing a
background theory and (positive) examples, respectively. Then H is a hypothesis
wrt B and E if and only if H is a clausal theory such that B∧H |= E and B∧H
is consistent. We refer to a “hypothesis” instead of a “hypothesis wrt B and E”
if no confusion arises.

3 Upward generalization in CF-induction

Here, we introduce upward generalization of CF-induction. A bridge theory of
CF-induction consists of instances from so-called (new) characteristic clauses [2],
which are the subsumption-minimal consequences of B∧E (that is, µTh(B∧E))
satisfying a given language bias. In the following, we assume the language bias
as follows.

Definition 2 (Induction field). An induction field, denoted by IH = 〈L〉,
where L is a finite set of literals to appear in ground hypotheses. A clausal
theory S belongs to IH if every literal in S is included in L. Note that L is the
set of negations of literals in L.

Using the above notion, we can describe bridge theories of CF-induction4.

4 Technically, they must contain at least one new characteristic clause of E to ensure
the consistency with the background theory. See [1] for more detail.
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Definition 3 (Bridge theory). Let B and E be a background theory and
examples, respectively. Let IH = 〈L〉 be an induction field. Then a ground
clausal theory CC is a bridge theory of CF-induction wrt B, E and IH if CC
consists of instances from characteristic clauses of B ∧E, each of which belongs
to 〈L〉. If no confusion arises, a bridge theory of CF-induction wrt B, E and IH
is simply called a bridge theory.

Theorem 1. Let CC be a bridge theory. Then, for any hypothesis H such that
H |= ¬CC, there is another bridge theory CC ′ such that H ≽ M(CC ′).

Theorem 1 can be obtained by applying the technique in the literature [9] to re-
duce anti-entailment to anti-subsumption. Based on Theorem 1, any hypothesis
can be found over the subsumption lattice bounded by the minimal complement
of a bridge theory.

Example 1. [9] Let examples E1 be {defeat(claudius)} and a background theory
B1 be {∅}. Let a target hypothesis H1 and an induction field IH1 be as follows:

H1 = {risk life(hamlet), risk life(hamlet) ⊃ defeat(claudius)}.
IH1 = {defeat(claudius), risk life(hamlet),¬risk life(hamlet)}.

Suppose that a bridge theory CC1 = {¬defeat(claudius)} is given. We notice
that H1 |= ¬CC1 but H1 ̸≼ ¬CC1. Next, consider another bridge theory CC2 =
CC1 ∪ {risk life(hamlet)∨¬risk life(hamlet)}. Note that the bridge theories
of CF-induction are allowed to include tautologies belonging to the induction
field. M(CC2) is { risk life(hamlet)∨ defeat(claudius), risk life(hamlet) ⊃
defeat(claudius)}. Indeed, H subsumes M(CC2).

4 Downward generalization in CF-induction

Now, we focus on the entailment relation CC |= ¬H for a bridge theory CC and
a ground hypothesis H. Recall that the bridge theory consists of subsumption-
minimal consequences of B ∧ E. Hence, constructing a relevant bridge theory
may be viewed as approximating ¬H with some relevant (subsumption-minimal)
consequences of B ∧ E. In the literature [8], the entailment relation has been
logically simplified with the following deductive operator:

Definition 4 (γ-operator). Let S and T be clausal theories. T is directly γ-
derivable from S if and only if T is obtained from S under the following condition:

T = (S − {D}) ∪ {C1, . . . , Cn} for some n ≥ 0 where Ci ⊇ D for all 1 ≤ i ≤ n.

We write S ⊢γ T if and only if T is directly γ-derivable from S and ⊢∗
γ is a

reflexive and transitive closure of ⊢γ .

Theorem 2. [8] Let CC be a bridge theory. For any ground hypothesis H such
that CC |= ¬H, there is another bridge theory CC ′ such that CC ′ ⊢∗

γ M(H).
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By Theorem 2, any ground hypothesis can be derived by γ-operator. Recall Ex-
ample 1. We can obtain M(H1) from CC2 in such a way that the unit clause
¬defeat(claudius) in CC2 is expanded to ¬defeat(claudius)∨¬risk life(hamlet)
and replaced by it. We remark that any non-ground hypothesis can be also ob-
tained by applying the γ-operator followed by anti-instantiation [8].

Example 2. Let a background theory B2 and examples E2 be as follows:

B2 = {female(s) ∨ male(s)}. E2 = {human(s)}.

Consider a bridge theory CC3 = {female(s) ∨ male(s), ¬human(s)}. Suppose
that we construct M(H2) by applying γ-operator to CC3 in such a way that
¬human(s) is expanded to two clauses ¬human(s)∨female(s) and ¬human(s)∨
male(s) and replaced by them. Then, we obtain H2 by computing M(M(H2)):

{¬female(s) ∨ human(s), ¬male(s) ∨ human(s), ¬female(s) ∨ ¬male(s)}.

By applying an anti-instantiation operator, we obtain a non-ground hypothesis:
{female(X) ⊃ human(X), male(X) ⊃ human(X), ¬female(X)∨¬male(X)}.
Note that the last clause ¬female(X)∨¬male(X) does not involve in explaining
E. In this sense, this clause can be treated as a redundant one, though it is a
correct integrity constraint on female(X) and male(X).

5 Discussion and concluding remarks

In this paper, we studied two generalization approaches in CF-induction. Both
approaches are based on the subsumption relation and retain the completeness
of CF-induction. However, their favorite hypotheses, which tend to be found,
are different from each other. The difference lies in their target theories to be
searched: on the one hand, downward generalization focuses on the minimal
complement of a hypothesis M(H). On the other hand, upward generalization
focuses on a hypothesis H itself. Fig. 3 describes their search strategies.

The upward approach is based on anti-subsumption, and directly computes
hypotheses from M(CC). Hence, it is more likely to find compressed hypotheses,
since it uses anti-subsumption operators dropping some literals from a clause. In
contrast, the downward approach is likely to find officious hypotheses, which are
not necessarily used to explain the examples (but consistent with the background
theory), like Example 2. To derive such hypotheses in upward generalization, we
may need anti-weakening operators adding some clauses.

In the inductive learning point of view, we are used to seek more compressed
descriptions based on the principle of Occum’s razor. Thus, the upward approach
is suitable for this principle. In contrast, the downward approach interestingly
takes the risk that hypotheses can contain some extra rules that are not necessary
for explaining examples. In some cases, this efficiently works for giving users some
unexpected insights to the incomplete background theory.

Our result enables CF-induction to bi-directionally search for the target hy-
pothesis in both downward and upward approaches. The upward approach has
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Fig. 3. Search strategies in upward and downward approaches

been actively studied in the context of refinement operators, and thus we can
use their sophisticated operators, such as heuristics-based ones. However, the
downward approach is not straightforward, since the compression measure is
not simply used. Note that the minimal complement M(H) is related to the
models in H. Hence, it would be helpful if there is some relevant measure for
evaluating the models.
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