
Online Bayesian inference for the parameters of
PRISM programs

James Cussens

Dept of Computer Science & York Centre for Complex Systems Analysis
University of York

Deramore Lane, York, YO10 5GE, UK
jc@cs.york.ac.uk

Abstract. This paper presents a method and working implementation
for approximating posterior distribution over the parameters of a given
PRISM program. A sequential approach is taken where the distribution
is updated one datapoint at a time. This makes it applicable to online
learning situations where data arrives over time. The method is appli-
cable whenever the prior is a mixture of products of Dirichlet distribu-
tions. In this case the true posterior will be a mixture of very many such
products. An approximation is effected by merging products of Dirichlet
distributions. Due to the heavy computational burden of this approach,
the method has been implemented in the Mercury logic programming
language. The method is evaluated using a hidden Markov model exam-
ple.

1 Introduction

In the Bayesian approach to ‘parameter estimation’ the goal is to return the
joint posterior distribution over all parameters, rather than return the single
‘best estimate’ of the parameters. The motivation for attempting this complex
task is that the posterior captures the combined information given by observed
data and prior knowledge, and so provides a much fuller picture of the state of
our knowledge about the parameters than can a point estimate.

Unfortunately, many posterior distributions are hard even to represent let
alone compute efficiently. This is certainly generally the case for posterior distri-
butions over the parameters of PRISM programs. PRISM programs define distri-
butions over finite or countably infinite sample spaces using potentially complex
generative processes. Generally the steps taken in the generative process are not
discernible from any observed output—a hidden data situation—which leads to
a posterior distribution with many local modes.

Fortunately, if the prior over PRISM parameters is a mixture of products of
Dirichlet distributions, then at least the form of the posterior will be known: it
will also be a mixture of products of Dirichlet distributions. However, the num-
ber of mixture components will usually be large. This paper presents an exact
technique for finding all these mixture components for small scale problems and
considers approximate methods for cases where the exact approach is infeasible.



2 PRISM

A PRISM program is a logic program together with a probabilistic built-in pred-
icate msw/2. From a procedural logic programming perspective PRISM programs
are very easy to grasp: if, for example, the goal msw(init,S) is called then it
will always succeed and the logical variable S will be instantiated by sampling
from a probability distribution associated with the switch name init. All other
predicates behave in the normal logic programming fashion.

Considering now the general case, a ground fact such as msw(’X1’,x) is
actually an abbreviation for a fact msw(’X1’,j,x) which is a statement that it
is true that the random variable X1,j is instantiated to have a value x, where
j ∈ N. For any j, j′ ∈ N, where j 6= j′, X1,j and X1,j′ must be independent
and identically distributed (which motivates the abbreviation just mentioned
and explains why the index j is not represented in actual PRISM programs).
The common distribution of the X1,j is an arbitrary discrete distribution; its
values are defined by the structure of program, the associated probabilities are
parameters of the PRISM program. A family of iid random variables such as
{X1,j}j∈N is known as a switch.

Typically a PRISM program has more than one switch, each switch defining a
different family of iid variables. Crucially, any two distinct switches are mutually
independent so that ∀i, i′, j, j′ Xi,j is independent of Xi′,j′ whenever i 6= i′. Given
any finite subset of the {Xi,j}i,j a product distribution can be defined on its joint
instantiations in the obvious way. As noted in [2] it then follows that there is a
probability distribution which assigns a probability to any (measurable) set of
infinite joint instantiations of the {Xi,j}i,j . This is known as the basic distribution
and is consistent with all the finite product distributions.

Usually a particular target predicate is distinguished in a PRISM program.
In this paper, we assume that the target predicate is defined so that exactly
one ground atomic formula with it as predicate symbol is logically entailed by
any given joint instantiation of the switches. Such ground instances are viewed
as outputs of the PRISM program and will be generically denoted by y. It is
a PRISM requirement that associated with each output there is a finite set
of explanations. An explanation is a finite collection of switch instantiations
which together logically imply the observed datum. Because an explanation x
determines an output y, the logical structure of the PRISM program defines a
function f such that f(x) = y. This can generalised to vectors of explanations
determining vectors of outputs: f(x) = y.

3 The posterior distribution when the prior is a mixture
of products of Dirichlet distributions

The key point about statistical inference for PRISM programs is that, barring
exceptional cases, the values of the switches—the explanation—associated with
any observed datapoint will be unobserved. So this is a ‘hidden data’ situation. If
Dirichlet prior distributions are used for multinomial switch distributions then,



because the switch values are not observed, the posterior will be a mixture of
Dirichlet distributions, with one component for each possible value of the hidden
switch instantiations. This motivates using mixtures of Dirichlet distributions as
priors. Let y = y1, . . . , yT be the observed data. Let

P (θ) =

L∑
`=1

P (`)P (θ|`) (1)

be the prior distribution where each P (θ|`) is a product of Dirichlet distributions:

P (θ|`) =
∏
i

Dir(θi|α`,i) (2)

where θi are the parameters for the ith switch, and α`,i is the associated vector
of Dirichlet parameters. P (`) defines an arbitrary discrete distribution. P (θ) is
thus a mixture distribution. The P (θ|`) are the mixture components and the cor-
responding P (`) are the mixture weights. Due to space constraints it is necessary
to just state what the posterior distribution is:

P (θ|y) =
1

P (y)

L∑
`=1

P (`)∏
i B(α`,i)

∑
x:f(x)=y

∏
i

Dir(θi|α`,i+Ci(x))
∏
i

B(α`,i+Ci(x))

(3)
In (3), B is the multinomial Beta function, x denotes a vector of hidden expla-
nations for the observed data vector y and Ci(x) are the counts associated with
switch i associated with x.

4 Sequential approximate computation of posterior
distributions for PRISM parameters

Following (3) the posterior P (θ|y) could be eventually computed exactly by find-
ing each x such that f(x) = y, constructing the |{x : f(x) = y}|×L products of
Dirichlet distributions and computing their weights. If

∏
i Dir(θi|α`,i +Ci(x)) =∏

i Dir(θi|α`′,i + Ci(x
′)) for some `, `′,x,x′ then evidently the components are

identical and can be merged into one by adding the weights. In a final step the
weights can be normalised, effectively computing P (y).

Despite the possibility of merging identical mixture components, the final
number of mixture components will typically be too large for this exact approach
to be of practical use. Instead an approximate sequential approach will be taken.
The idea is to compute (approximations to) the following sequence of posterior
distributions: P (θ|y1), P (θ|y1, y2), . . . P (θ|y1, y2 . . . yT ). The key to this idea is
that (1) if a prior is a mixture of products of Dirichlet distributions then so will
the posterior and that (2) the posterior P (θ|y1, . . . , yt) can be constructed by
taking the ‘prior’ P (θ|y1, . . . , yt−1) and conditioning on the single observation
yt. Since the number of mixture components grows exponentially with t, at each
point only an approximation to the distribution P (θ|y1, . . . , yt) is maintained.



A limit K on the number of mixture components is set; if a mixture distribu-
tion is constructed with more than K components then it is approximated by
successively finding the component with the smallest weight and then ‘merging’
it with the ‘nearest’ other component. This approach to mixture reduction was
used in [1] and the important details of how merging is done and what counts
as ‘nearest’ is described there.

To give more detail: for each yt, all explanations xt are searched for, although
only the associated count vector

⊗
i Ci(xt) is recorded. It follows that for this

method to be practical the number of explanations for any single datapoint
cannot be too great. Concerning memory requirements, let n(yt) be the number
of distinct values of

⊗
i Ci(xt), then the number of mixture components can

temporarily grow to Kn(yt) immediately prior to the reduction just mentioned.
Due to the computationally demanding nature of the task, the fastest logic

programming language available was used, namely Mercury [3]. A collection of
6 Mercury modules were developed: model.m, prior.m, data.m, sequential.m,
params.m and vectors.m. The first three of these are problem-specific and de-
fine, respectively, the PRISM model, prior distribution and observed data for
a particular Bayesian inference problem. The latter 3 are not problem-specific.
sequential.m implements the main sequential updating algorithm, params.m
just records the desired limit on components (K) and vectors.m contains util-
ity predicates.

5 Results for the approximate sequential approach

This section reports empirical results using the approximate sequential approach.
All results were produced using Mercury version rotd-2010-04-17, configured for
i686-pc-linux-gnu. The machine was a dual-core 3GHz machine running Linux.
In all cases only a single core was used. For some of the bigger experiments it
was necessary to increase the default size of the Mercury det stack using the
runtime --detstack-size-kwords option.

In a first experiment a single datapoint hmm([b,b,a,a,a]) was sampled from
a PRISM encoding of a simple 2-state 2-symbol hidden Markov model which
uses 5 switches:init, tr(s0), tr(s1), out(s0), out(s1). These are, respec-
tively, switches for: initial state selection, transitions from states s0 and s1 and
emissions from these two states. A prior with a single product of Dirichlet distri-
butions was used, its parameter vector being: ((1, 1), (1, 1), (1, 1), (1, 1), (1, 1)).

The approximate sequential algorithm was run with a component limit set
to 1,000,000 mixture components. There are 26 = 64 explanations for a single
datapoint and 44 distinct explanation count vectors. Since the number of com-
ponents in the posterior is thus only 44 this limit had the effect of imposing
no approximation, and so an exact representation of the posterior was obtained.
The ten most probable components are show in Fig 1 with the mixture weights in
the leftmost column. The first thing to note is the symmetrical nature of the pos-
terior. The components come in equally probable pairs. These pairs correspond
to explanations with the two hidden states swapped round. Evidently, since this



symmetry is obvious from our knowledge of HMMs, this could be exploited. Here
this is not done since the goal is to test the algorithm and implementation in
the general case.

init tr(s0) tr(s1) out(s0) out(s1)

0.0786713286713288 ((2, 1), (2, 2), (1, 4), (1, 3), (4, 1))

0.0786713286713288 ((1, 2), (4, 1), (2, 2), (4, 1), (1, 3))

0.0629370629370632 ((2, 1), (6, 1), (1, 1), (4, 3), (1, 1))

0.0629370629370632 ((1, 2), (1, 1), (1, 6), (1, 1), (4, 3))

0.05664335664335645 ((2, 1), (1, 2), (1, 5), (1, 2), (4, 2))

0.05664335664335645 ((1, 2), (5, 1), (2, 1), (4, 2), (1, 2))

0.028321678321678295 ((2, 1), (4, 2), (2, 1), (3, 3), (2, 1))

0.028321678321678295 ((1, 2), (1, 2), (2, 4), (2, 1), (3, 3))

0.026223776223776234 ((2, 1), (2, 2), (2, 3), (1, 3), (4, 1))

0.026223776223776234 ((2, 1), (1, 4), (3, 1), (3, 2), (2, 2))

Fig. 1. Ten most probable products of the exact posterior distribution using 1 data-
point drawn from the HMM (Took 0.013 seconds)

To test the accuracy of the approximation method a larger dataset of 10
points was used with the same prior. Note that there are (26)10 = 1.2 × 1018

possible joint explanations. A component limit of just 10 components was used.
The final approximation to the posterior took 9.4 seconds to compute and is
shown in Fig 2.

init tr(s0) tr(s1) out(s0) out(s1)

0.520 ((6.0,6.0),(14.5,12.3),(12.6,14.5),(10.9,16.0),(14.1,13.0))

0.248 ((7.4,4.6),(19.1,11.3),(10.0,13.6),(11.5,18.9),(13.5,10.1))

0.087 ((5.8,6.2),(16.9,13.6),(13.7, 9.7),(15.7,14.9),( 9.3,14.1))

0.042 ((5.4,6.6),( 9.9,14.3),(15.0,14.7),(10.7,13.6),(14.3,15.4))

0.023 ((3.4,8.6),(11.3, 9.4),(12.0,21.3),(10.7,10.1),(14.3,18.9))

0.019 ((4.7,7.3),(17.4, 7.5),( 9.4,19.6),(10.3,14.7),(14.7,14.3))

0.019 ((6.2,5.8),(17.8,11.2),(11.1,13.9),(16.0,12.9),( 9.0,16.1))

0.018 ((4.7,7.3),(16.2, 8.7),(10.0,19.1),(13.5,11.4),(11.5,17.6))

0.017 ((4.9,7.1),(10.6,12.4),(13.0,18.0),(13.2, 9.8),(11.8,19.2))

0.007 ((7.9,4.1),(17.9,13.8),(12.4, 9.9),(10.7,21.0),(14.3, 8.0))

Fig. 2. Products of Dirichlet distributions computed using the approximate sequential
approach using 10 datapoints drawn from the HMM and with a component limit of 10
(Took 9.4 seconds)

The experiment was then re-run but with the order of the datapoints re-
versed. Evidently such a reversal does not alter the true posterior but may



impact on an approximation which uses a sequential approach. The final ap-
proximation from the run with reversed data are shown in Fig 3. A different,
albeit similar, approximation has been produced.

init tr(s0) tr(s1) out(s0) out(s1)

0.525 ((6.5,5.5),(13.1,12.6),(12.0,16.3),(11.7,14.0),(13.3,15.0))

0.116 ((7.1,4.9),(16.3,11.0),( 9.3,17.4),(13.6,13.7),(11.4,15.3))

0.093 ((4.8,7.2),(15.1,12.2),(13.9,12.8),(15.9,11.4),( 9.1,17.6))

0.068 ((4.9,7.1),(18.0, 8.4),(10.2,17.4),(11.5,15.0),(13.5,14.0))

0.068 ((6.2,5.8),(16.7,10.6),(11.0,15.7),( 8.6,18.7),(16.4,10.3))

0.055 ((5.0,7.0),(13.8,12.5),(13.9,13.9),(10.3,15.9),(14.7,13.1))

0.040 ((5.1,6.9),( 9.4,13.7),(14.5,16.4),(12.1,11.0),(12.9,18.0))

0.017 ((4.8,7.2),( 9.7,12.4),(13.6,18.4),(6.91, 5.1),(18.1,13.9))

0.017 ((8.2,3.8),(19.1,13.5),(11.6, 9.8),(16.2,16.4),( 8.8,12.6))

0.001 ((8.7,3.3),(18.4,13.0),( 9.9,12.7),(14.5,16.9),(10.5,12.1))

Fig. 3. Products of Dirichlet distributions computed using the approximate sequential
approach using 10 datapoints drawn from the HMM and with a component limit of 10
Datapoints have reverse order from those used to produce the results in Fig 2.

A mixture component limit of 100,000 was then used (on the same data) and
an approximation to the posterior with this number of components was produced
in 197 seconds. It is notable that the two most probable components account
for less that 0.5% of the probability mass. Space prevents any further analysis
of these results.

6 Conclusions

The initial results presented here are encouraging in that acceptable results
have been produced for modest-sized problems. Evidently, it remains to con-
duct a proper empirical comparison with competing approaches to approximate
Bayesian inference for PRISM parameters.

References

1. R. G. Cowell, A. P. Dawid, and P. Sebastiani. A comparison of sequential learning
methods for incomplete data. In J. M. Bernado, J. Berger, A. P. Dawid, and A. F. M.
Smith, editors, Bayesian Statistics 5, pages 533–541. Clarendon Press, Oxford, 1995.

2. Taisuke Sato and Yoshitaka Kameya. Parameter learning of logic programs for
symbolic-statistical modeling. Journal of Artificial Intelligence Research, 15:391–
454, 2001.

3. Zoltan Somogyi, Fergus Henderson, and Thomas Conway. The execution algorithm
of Mercury: an efficient purely declarative logic programming language. Journal of
Logic Programming, 29(1–3):17–64, October-December 1996.


