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Abstract. With the emergence of ubiquitous computing, innovations in
mobile phones are increasingly changing the way users lead their lives.
To make mobile devices adaptive and able to autonomously respond to
changes in user behaviours, machine learning techniques can be deployed
to learn behaviour from empirical data. Learning outcomes should be
rule-based enforcement policies that can manage pervasively the devices,
and at the same time facilitate user validation when and if required.
In this paper we demonstrate the feasibility of non-monotonic ILP in
the automated task of extraction of user behaviour rules through data
acquisition in the domain of mobile phones. This is a challenging task
as real mobile datasets are highly noisy and unevenly distributed. We
present two applications, one based on an existing dataset collected as
part of the Reality Mining group, and the other generated by a mobile
phone application, called ULearn, that we have developed to facilitate a
realistic evaluation of the accuracy of the learning outcome.
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1 Introduction
In the past few years, companies such as Apple and Samsung have really managed
to develop cutting-edge mobile systems that have revolutionised the way people
use mobile phones. Often, the complexity of these systems prevent the user from
utilising the device to its maximum. A more pervasive approach requires such
systems to be able to continuously adapt to the user’s preferences and behaviour
requiring as little user intervention as possible. Rules are an effective way of
specifying how these systems should adapt in different context, and rule-based
enforcement policies that govern system choices are increasingly becoming more
popular in pervasive systems. Information about user behaviours can be collected
through their actions and interaction with the device and used together with past
data and background knowledge about contextual information to compute new
rule-based enforcement policies and/or changes in existing ones. Such scenarios
suggest the use of Inductive Logic Programming (ILP) [3] as an appropriate
learning mechanism. But to our knowledge no existing ILP techniques have so
far been applied to large, real data in the mobile phone domain.

In this context, to provide accurate solutions the ILP technique has to make
use of heuristics to guide the search in a (potentially large) search space to min-
imise computation time, cater for noise in the data and for uneven distribution
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of data. This paper demonstrates that the non-monotonic inductive program-
ming tool, TAL (Top-directed Abductive Learning) [2] can be appropriately cus-
tomised to learn new mobile user behaviours as well as revise existing rules with
approximately 80% level of accuracy. A learning framework is presented where
domain knowledge about contextual information and language bias are defined
as normal logic programs, and applied to two real datasets. The former uses the
mobile dataset collected as part of the Reality Mining group [4] whereas the lat-
ter has been collected through a proof-of-concept mobile phone application we
have developed, called ULearn. The application collects contextual information
about user mobility as well as user behaviours in terms of interactions with the
device (e.g. accepting a call, rejecting a call, etc.), it allows the users to specify
a language bias and computes rule-based enforcement policies. These are pre-
sented to the user in the form of English text for validation purposes and the
user can refine the learning outcomes by selecting rules to revise and enforcing
constraints on the language. The evaluation of the learning outcomes in both
applications shows that the learning accuracy changes according to the heuristics
and considerably improves with the use of a standard cover loop.

The paper is structured as follows. Section 2 summarises basic background
notions used throughout the paper. Section 3 presents our learning framework
and introduces main parts of its background knowledge and language bias mod-
elled in the specific domain of phone calls. Section 4 illustrates the application
of the framework to two real mobile domain datasets presenting some accuracy
results of the learning outcomes. Finally, Section 5 concludes with final remarks
and directions for future work.

2 Background

We assume the reader is familiar with basic notions and terminologies of Logic
Programming. ILP is regarded as a machine learning technique that is used to
enrich a knowledge base with rules that discriminate between positive and nega-
tive examples. Specifically, ILP is concerned with the computation of hypotheses
H that together with a background knowledge B explain a given set of examples
E, namely BUH E E under given semantics. In this paper we consider the case
when B and H are normal logic programs, E is a set of ground literals and |
is the entailment relation under the stable model semantics.

The space of possible solutions is inherently large in particular in real do-
main applications with large datasets, so different levels of constraints can be
imposed to restrict the search for hypotheses. A structure on the hypothesis can
be employed to impose an instance-specific language bias S. Mode declarations
are a common tool to specify a language bias [3]. These define which predicates
to use in the head and in each of the body conditions of the rules that form
a hypothesis as well as how their arguments are unified or grounded. In the
TAL system [2], the mode declarations are mapped into a top theory T that
constrains the search by imposing a generality upper bound on the inductive
solution. The system uses an abductive proof procedure instantiated on this top
theory together with the background theory. The abductive derivation identifies
the heads of the rules (of a hypothesis solution) and the conditions needed to



Learning user behaviours in real mobile domains 3

cover positive examples and to exclude negative examples, ensuring consistency.
The abductive solution is guaranteed to have a corresponding inductive hypoth-
esis H that is a solution with respect to the examples. For further details on the
ILP system, TAL, the reader is referred to [2].

3 Towards an adaptive system using ILP

In this section we briefly describe our learning framework for learning and revis-
ing mobile user behaviour rules, with a brief overview of the concepts modelled in
the background knowledge and language bias. As shown in Figure 1, our learning
framework includes a modelling step where background knowledge and exam-
ples are modelled as normal logic programs and a language bias is defined. The
TAL learning system is then applied. Rule refinement can then be performed on
the learned outcomes based on a subsequent collection of data. The framework
also includes cross validation mechanisms for assessing the accuracy of the rules
learned.

|
|
|
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\ Validation
|
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: Programming
|
Background rF!ule :
knowledge + ! refinemen
Language Bias :
|
'

Fig. 1: The learning framework

In the application domain of mobile phones, as well as in many context-
sensitive applications, the concept of time plays an important role in defining
user behaviours, as all user behaviours occur in terms of time. We answer phone
calls at a particular point in time and we are at location Y at a time-point X.
These are often not instantaneous and have a certain time duration. Events are
therefore modelled in our background knowledge using a notion of timestamp
span defined in terms of a start-time and an end-time. A basic notion of time
as [Day, Month,Y ear] has been defined together with ordering relations over
time (e.g. before and after). These have been used to define different notions
of duration span which allow inference of specific knowledge from our collected
data. Examples related to the domain of mobile phones include:

— Activity span: defines the period of a user’s activity on the phone.

— Application span: denotes the period as well as the type of application a
user is using. Application types are defined in the background knowledge.

— Device span: represents the period of time for which a device is present
in the user’s vicinity. Devices are also typed and defined in the background
knowledge.
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— Cell span: indicates the period in which the user is at a certain location.
All locations traversed by the user are typed and included in the background
knowledge.

— On span: Shows the period that the phone is switched on.

More abstract notions are defined in the background knowledge in terms of basic
notions of time and duration span so to allow the learning of user-behaviour rules
that refer to more “high-level” concepts. These include notions of concepts of
time like weekend, morning, afternoon and evening, as well as location of user,
device proximity, user activity, application usage events, charge event, etc., each
at a time point [D,T]. These notions are defined in terms of their respective
span notions described above and checks between the time and the duration
of the span. For example, device proximity at time [D,T]. This is defined in
the background knowledge in terms of the existence of a device span such that
[D,T] is after [D1,T1] but before [D2,T2]. Further, location plays a crucial
role in defining mobile user behaviours. Sufficient contextual information about
user’s transition from one location to another can be collected through the mobile
device and used to define a predicate that expresses the user being at a location
X at time [D,T].

Different language bias can be defined to specify the structure of the user
behaviour rules that we might be interested to learn. As proof of concept we
have considered the task of learning when a user answers or rejects a phone
call. The head declaration for such a task can be as rich as needed in or-
der to compute rules that are dependent on few or many contextual aspects.
An example of such head declaration is modeh(accept(+date, +time, +contact))
with a corresponding body declaration of the form modeb(weekend(+date)),
modeb(evening(+time)), modeb(= (4contact, #contact), [no ground constants]),
and modeb(\ + (= (+contact, #contact)), [no ground constants]), where the ar-
gument [no ground constants] defines the number of ground constants allowed
in the search. For lack of space we omit the full definition of our language bias.

4 Real mobile domain applications
We have applied our framework to two different mobile domain datasets. Each
learning outcome has been cross validated using 5 folds and we perform ROC!
analysis on each fold in order to compute the total error estimate. We show
below, the solutions in English that have been produced automatically from the
output of TAL by means of a translation mechanism that we have implemented.
The first dataset is the Reality Mining [4] dataset. This represents the largest
mobile phone experiment attempted in the academic word. It consists of a large
amount of data on human behaviour and group interactions collected using one
hundred Nokia 6600 smart phones with pre-installed software developed at the
University of Helsinki. The information collected includes call and message logs,
Bluetooth devices in proximity of approximately five meters, cell tower IDs,
application usage and phone status (i.e. active or idle). The dataset has been
anonymised and made available to the general public?. We have selected a wide

1 ROC: Receiver Operating Characteristic
2 The Reality Mining Dataset:http://reality.media.mit.edu/dataset.php
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range of users, but ultimately focussed on studying the most problematic cases
in terms of user’s actions. Due to space limitation we only give an example of the
most accurate user behaviour rules that we have been able to compute from this
dataset. User #96 has a total number of 142 positive examples and 35 negative
examples. Average error estimate turned out to be 19.2%. Listing 1.1 illustrates
the best solutions while Table 1 shows some of the performance metrics of the
ROC analysis.

solution (—106,[(accept(-,-,C):—\4+C=200)])
solution(—104,[(accept (A,B,-):—not_nearDevice (A,B,413)) ,(accept(-,-,H):=\+H=200)])
solution(—104,[(accept (-,-,C):—C= —1),(accept(-,-,G):—\+G=200)])

Accept calls: not from contact 200
Accept calls: when you’'re not near device 413, OR not from contact 200
Accept calls: when the contact is not in your address book, OR not from contact 200

Listing 1.1: Results for User #96

Fold Accuracy Error Precision(PPV)

Fold 1 0.8571 0.1429 0.8529
Fold 2 0.9429 0.0571 0.9429
Fold 3 0.7143 0.2857 0.7143
Fold 4 0.6857 0.3143 0.6857
Fold 5 0.8378 0.1622 0.8378

Table 1: Performance Measure Results for User #96

Accuracy is the proportion of true results (both true positives and true nega-
tives), and the accuracy of the above rule lies between 70% and 95%, a measure
which is very promising. Precision is defined as the proportion of the true posi-
tives against all positive results (both true positives and false positives). In many
cases, precision is equal to accuracy meaning that our results are both accurate
and close to each other, showing that in each fold, the user’s behaviour does not
change much. Overall, the majority of the rules learned have one or two liter-
als in the body and the best solutions include always the negation of a contact
as the condition for accepting a call. This illustrates that the users’ decision of
accepting/rejecting calls is based on who the caller is, a result which is largely
intuitive.

For the second dataset, we have developed a comprehensive client-server ap-
plication, called ULearn where data acquisition and user interaction takes place
on an Android phone whilst the processing of data and execution of the learn-
ing algorithm happens on the server side. The rules, as a result of the training
examples, background knowledge and language bias, are displayed to the user
for validation. One of the main benefits of ULearn is the user’s involvement in
the learning process. The user can select any number of integrity constraints to
impose restriction on the search space, or select already learned rules for the-
ory revision. We make use of the algorithm presented in [1] so that the existing
rules are able to reflect and account for newly-seen instances of examples and
background knowledge. We have collected data from two users over a period of
approximately 2 months. Here we present the best solutions for both users and
also show how the results immediately improve when the cover loop approach is
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used. The score for each solution represents the accuracy of each rule.
User #2

/% Without cover loop %/
solution (—0.7065, |

(accept(P,Q,R,-,-,-,-,-,-,Y,_):—\+user_is_active (P,Q),\+R=7517429133,\+Y=1280) ,

(accept (A,B,C,_, -, -, - S ey m g m = Y:—\+user_is_active (A,B),\+C=7517429133,timex_after_h (B
L10)) 1)

Accept calls: When you’re not active, not from contact 7517429133, not when

your phone’s light level is 1280, OR when you're not active, not from contact

7517429133, after 10:00
o’clock

/% With cover loop %/
solution (—0.7717, |

(accept (A,B, -, -, - J,-):—not-at (A,B,1071.8253461) ,J=225),

(accept (- Q, ):—Q=1200490800) ,

(accept (-,-,Cl,_, yoy-,-):—C1=447515692890) ,

(accept (-,-,-,-,- s ,Ul,_,-):=U1=0),

(accept (Y1,21,A2, -, _,_,_,_,_, H2, _):—\4user_is_active (Y1,21),\+A2=7517429133,\ +H2
=1280)])

Accept calls: anywhere unless you’re at 1071.8253461, when your light level is

225, OR from contact 1200490800, OR from contact 447515692890, OR when

your screen 1is off , OR when you’re not active, not from contact 7517429133, not

when your light level is 1280

Listing 1.2: Best solution obtained without Cover Loop

5 Conclusion

The work presented in this paper demonstrates the applicability of the TAL sys-
tem to real mobile domains for supporting the learning of mobile user behaviours.
With appropriate definition of a relevant domain of discourse, language bias and
background knowledge our evaluation results indicate that the system performs
well when dealing both with large domains and large amount of data. In par-
ticular, it has proven to be a powerful non-monotonic ILP system that tolerates
noise and scales well with large domains and data because of its use of finite do-
main constraints that are not available in other systems. Further work includes
enriching the background knowledge and language bias further. For example, us-
ing light level information we can enrich the inference of context information for
instance, whether the user’s mobile phone is inside their pocket or handbag. We
can further use information about location to predict the user’s next location.
Last, but not least, we can explore the use of bagging, boosting together with
bootstrapping datasets in order to compute potentially richer rules with even
higher accuracy.
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