
Active learning of relational action models

Christophe Rodrigues, Pierre Gérard, Céline Rouveirol, Henry Soldano

L.I.P.N, UMR-CNRS 7030, Université Paris-Nord,
93430 Villetaneuse, France

Abstract. This paper addresses a relational reinforcement learning-like
problem in which an agent learns an action model in order to be able to
predict the effects of his actions. We propose here an integrated system
for both action model learning and action selection. Here the agent uses
the current action model to perform active learning and uses its planning
abilities to have a realistic evaluation of the accuracy of the model.

1 Introduction

Adaptive behavior studies how an autonomous agent can revise its knowledge so
as to adapt to an unknown environment. Such an agent needs to simultaneously
learn from experience, and act so as to fulfill goals. Therefore, it needs to inte-
grate learning and action selection mechanisms. When the agent’s knowledge is
constantly revised to take new examples into account, we call this online and
incremental learning.

Adaptation within relational representations is primarily addressed by Rela-
tional Reinforcement Learning (RRL) [2] that extends Reinforcement Learning
(RL) to 1st order representations. Indirect RL [6], in which an action model is
explicitly learned, is proved to be very efficient with relational representations
[1]. Given a state space S and an action space A, learning an action model T
consists in learning a transition function T : S ×A → S. Knowing such a model
T allows the agent to predict as ŝ′ the next state s′ given the current state s
and an action a. In the following, correct prediction such that ŝ′ 6= s′ is referred
to as a prediction error or a mistake. Learning an action model, in the realizable
case investigated here, comes down to searching for an element in some class of
action models T that make no prediction error.

In this paper, the agent is equipped with an implementation of IRALe [5] that
starts from an empty action model and performs online learning of a conditional
STRIPS model. Then, we both add an active learning mechanism to the online
revision algorithm and provide the agent with planning capabilities.

2 On-line Learning of a Relational Action Model

IRALe [5] is a theory revision algorithm dedicated to action rule learning: start-
ing from scratch, it learns the different possible effects observed after executing



an action in a given state. Only counter-examples are stored, namely examples
that raised a prediction mistake at some point during the model construction.

States are described as conjunctions of ground literals. We assume that when
an agent emits an action, state literals that are not affected by the action are not
described in the effect part. The examples are denoted by x.s/x.a/x.e.add, x.e.del,
with x.s a conjunction of literals describing the state, x.a a literal of action and
an effect part with x.e.add a conjunction of positive literals and x.e.del a con-
junction of negated literals, as in a STRIPS-like notation.

IRALe builds an action model T represented as a set of rules T.R and a
set T.X of counter-examples that have been memorized during the agent his-
tory. Each rule r is composed by a precondition r.p, an action r.a and an effect
r.e, and is denoted as r.p / r.a / r.e. As opposed to [5], we restrict in this
work to rules where all variables of the precondition are connected to variables
in the action literal. According to a rule r, an action r.a has no other effects
but those described by r.e. For instance, a well-formed rule is the following:
on(X,Z), on(Y,W )/move(X,Y )/on(X,Y ),¬on(X,Z). Note that a given action
may be represented by several rules.

Matching operations between rules and examples rely on OI-subsumption
[3]. Note that two formulas may have several least general generalizations (lgg ’s)
under OI-subsumption, each corresponding to a largest common substructure
between the input formulas.

Definition 1. For any rule r, state s, action a and effect e,

– r pre-matches (s, a) (r
sa∼ (s, a)) iff there exists injective substitutions σ and

θ such that i) (r.a)σ = a, and ii) (r.p)σθ ⊆ s.
– r post-matches (a, e) (r

sa∼ (s, a)) iff there exists an inverse substitution
ρ−1, and two injective substitutions σ and θ such that i) (r.a)ρ−1σ = a ii)
(r.e)ρ−1σθ = e .

– r covers x (r ≈ x) iff r
sa∼ (x.s, x.a) and r

ae∼ (x.a, x.e) for the same injective
substitutions σ and θ.

– x contradicts r (x � r) if r pre-matches (x.s, x.a) for σ and θ substitutions,
and r doesn’t post-match (x.a, x.e) with the same substitutions.

The model T is revised whenever the current action model fails to correctly
predict the effect part of some incoming example. This happens, either because
no rule pre-matches the current example (completeness issue) or because there
are rules that pre-match this example, but do not post-match it (coherence
issue). In both cases, the model T needs to be updated to T ′ in order to preserve
coherence and completeness w.r.t. xu and other past counter-examples previously
memorized in an example memory T.X.

When a counter-example xu is encountered (in which case xu is stored in
T.X), two kinds of modifications may be performed. cf [5] for more details. We
focus here on generalization; if no rule T.R pre-matches xu, the revision algo-
rithm (in order to preserve completeness) then searches for a generalization of a
rule r of T.R such that r post-matches xu and does not contradict any example
in T.X (preserving coherence). If no such generalization exists, xu becomes a



rule and is added as such to T.R. Note that rules are generalized by comput-
ing least general generalizations (lgg) between examples, and between rules and
examples.

3 Learning and action selection integration

At any moment, the agent is in a given state s and then performs an action a
that will have some effects resulting in a new state s′. In this work, we consider
that the agent is in an exploration mode, which goal is to acquire a correct and
complete action model. We study here ε-active exploration: with probability
εa, the action to perform is chosen randomly, otherwise active exploration is
performed. In a random mode, in a given state and as in MARLIE [1], any
syntactically correct action can be selected and performed by the agent, and
not only the legal ones. In the following, a syntactically correct action is an
action instantiated with any object of the world satisfying type constraints (when
available). A legal action has observable effects (for example, moving a clear block
on another clear block), while an illegal action has no observable effects. Note
that so-called illegal actions for a given state are numerous (such as stacking a
block on a non clear block, or stacking the floor on a block).

In the active mode, the agent chooses an action that it expects to lead to a re-
vision/generalization of the model. Hopefully, this should help increasing the ra-
tio of the informative statei/actioni/statei+1 examples (i.e. counter-examples as
previously defined) within the sequence of action/state/state1/action1/state2/
.../staten representing the trajectory of the agent in the state space.

Intuitively, our active exploration strategy uses the current action model to
select an action a which is not applicable, according to the current model, to
the current state s but the effects of which are compatible with s. If this action
is successfully applied, it will generate an example (s, a, s′) that is expected to
yield a generalization of one action rule for a.

In the current state s, the idea is to select all rules r such that r.p does not
OI-subsume s (the corresponding action is therefore not applicable to state s)
and that post-match s, i.e. such that r.e.del, generalized with inverse substitu-
tion ρ−1j , is included in the current state s up to an injective substitution σj .

ACTIVE-SELECT then computes, for all corresponding ρ−1j σj , a random least
general generalization OI of preconditions of r with s (therefore lggjσjθj ⊆ s).

The candidate action to apply to state s is therefore (r.a)ρ−1j σjθj , provided

that r.aρ−1 is grounded by σjθj . Among all candidate actions (computed for all
rules r and for all ρ−1j σj , an action is then randomly selected.

Example 1 We consider here the Logistics domain. Let us suppose we have a
world composed of three trucks, three boxes and three cities and a current action
model T . Let r ∈ T.R be the following rule:
boxOnTruck(b2, ca), boxInCity(b1, ca), truckInCity(Tb, ca)/

load(b1, Tb)/boxOnTruck(b1, Tb),¬boxInCity(b1, ca)



Algorithm 1 ACTIVE-SELECT(T ,s)

Require: An action model T , and a state s
Ensure: An action a likely to yield a generalization of some rule in T
1: LA← ∅
2: for all r ∈ T.R s.t r.p does not OI subsume s do
3: for all (injective) post-matching substitutions ρ−1

j and σj such that

(r.e.del)ρ−1
j σj ⊆ s do

4: Compute lggj = lggOI((r.p)ρ−1
j , s) a random lgg given σj (lggjσjθj ⊆ s)

5: if r.a.ρ−1
j σjθj is ground then

6: LA← LA ∪ {((r.a)σjθj , size(lggj))}
7: end if
8: end for
9: end for

10: if LA = ∅ then
11: Randomly select an action a to apply to s
12: else
13: Select ai such that (ai, sizei) ∈ LA and sizei is max in LA
14: end if

and suppose that the agent is in the following state s:
boxInCity(b1, cb), truckInCity(tb, cb), boxInCity(b2, ca).

The rule r does not apply because there is no literal boxOnTruck(b2, ca) in
the current state s (condition line 2 of Alg.1 is true). The del list of the rule,
{boxInCity(b1, ca)}, generalized with inverse substitution ρ−11 = {ca/X} is in-
cluded in the current state with substitution σ1 = {X/cb}. For these substitutions,
Algorithm 1 computes a random least general generalization under Object Iden-
tity, namely lgg1 = boxInCity(b1, X), T ruckInCity(Tb, X) with θ1 = {Tb/tb}.
Substituting r.a with ρ−11 σ1θ1 yields the ground action load(b1, tb) added to LA.

There is another couple of post-matching substitutions, ρ−12 = {b1/Y } and
σ2 = {Y/b2}. For these substitutions, the following random lgg is computed:
lgg2 = boxInCity(Y, ca) with σ2 = ∅. Substituting r.a with ρ−12 σ2θ2 yields a non
ground action load(b2, Tb), which is not added to LA. The agent applies the ac-
tion load(b1, tb) and the resulting state s′ = boxOnTruck(b1, tb), truckInCity(tb, cb),

boxInCity(b2, ca) leads to an example which, as expected, is not covered by the
current action model. The revision then consists in generalizing the rule r: the
literal boxOnTruck(b2, ca) is dropped from the preconditions of r.

The closest related work concerning active learning in the context of a RRL
system is [4]. Our work mainly differs from this one because: i ) it is fully online
and incremental while restricted to a deterministic context; ii) it does not rely
on any estimation of how much a relational state is known (fully or partially) or
novel, which can be quite complex to evaluate in a relational context. We do not
either use planning capabilities for our active learning strategy, which is quite
simple : a state s is known by a rule r if the rule preconditions OI-subsume s
and it is useful to apply action a in a state s if we expect that applying a to s



will generate a state s′ such (s, a, s′) may yield generalizing of a rule r of action
a in the model. This strategy proves to be quite efficient in the following section.

4 Experimental results

We provide experimental results for both blocks world and Logistics domains, as
in [1] and [5]. We consider a variant of the blocks world domain in which color
predicates as b(X) (black) and w(X) (white) are introduced. In the colored-blocks
world, when move(X,Y ) is chosen, X is actually moved on top of Y only if X
and Y have the same color. Otherwise, X is not moved and its color shifts to the
same color as Y . For instance, the 2-colors 7-blocks world is more challenging
to learn than the 7-blocks world as the action model needs 7 rules to model the
action move. We also consider the logistics domain as described in [1].

The IRALe approach has already been shown more effective than MARLIE
[1] when measuring the prediction errors of the current model w.r.t. the number
of actions performed by the agent, i.e. the total number of examples encountered
[5]. This number is considered here as a time scale. By integrating learning with
planning we can evaluate the model with respect to the actual purpose of the
system, i.e. acting so as to fulfill assigned goals.

In what follows, each experiment is averaged over 100 runs. A run consists
in performing an exploration of the environment starting from a random state
and an empty model. During the run, the action model is periodically tested
by executing 20 trials. Therefore each test corresponds to a certain number of
actions performed. For each trial, start and goal states are drawn at random,
ensuring that a path with less than 20 actions exists between them. The FF
planner is then allowed a short time (10s) to find a plan. The trial is stated as a
success if applying the plan results in reaching the goal state. Each test returns
the variational similarity vs computed as the average ratio of the number of
successful plans obtained using the current model, to the number of successful
plans using the perfect (hand coded) model.

For each experiment, we display the average variational distance (1− vs) vs
the number of actions performed for various exploration modes. The random
exploration mode is compared to the εa-active exploration, with εa = 0.25 and
εa = 0.5.

In Figures 1 and 2, we experiment IRALe extended with the active explo-
ration strategy.

In all domains, adding active learning results in faster convergence to a null
error model. Even a low proportion of active learning (εa = 0.25) shows a clear
improvement over pure random exploration. However a larger proportion of ac-
tive learning (εa = 0.5) does not improve the convergence speed.

5 Conclusion

In this paper, we propose an integrated system implemented in an autonomous
agent situated in an environment. The environment is here supposed to be de-



Fig. 1. Experiments in the Logistics(5,5,5)
problem with increasing values of εa

Fig. 2. Experiments in the 2-Colors 7-
blocks problem with increasing values of εa

terministic: in a given state, the effects of a given action are unknown but deter-
mined. The agent uses the revision mechanism IRALe to perform online action
model learning as he explores the environment by repetitively selecting and ap-
plying actions. The main contribution of this paper is the action selection strat-
egy. Random selection is replaced, with probability εa, with an active selection
mechanism that selects actions expected to enforce a modification of the current
model. As a second contribution of the paper, the agent is equipped with plan-
ning capabilities, so we can evaluate the quality of the current action model in
a realistic way: after the agent has performed a given number of actions, we can
build plans to reach random state goals and estimate the proportion of plans
that succeed using the current model.

Experimental results show that active learning, as implemented here, actu-
ally improves learning speed as follows: an accurate action model is obtained
after performing much less actions than when using only random exploration.
Regarding future works, active learning is limited here by the states accessi-
ble from the current state. Better active learning can be achieved by enabling
the agent to plan experiments, i.e. to plan to reach some desirable, informative
state. Finally an important perspective is to extend the system to handle noisy
or indeterministic environments, using noise-tolerant revision algorithms.

References

1. T. Croonenborghs, J. Ramon, H. Blockeel, and M. Bruynooghe. Online learning
and exploiting relational models in reinforcement learning. In IJCAI, pages 726–
731, 2007.

2. S. Dzeroski, L. De Raedt, and K. Driessens. Relational reinforcement learning.
Machine Learning, 43:7–52, 2001.

3. F. Esposito, A. Laterza, D. Malerba, and G. Semeraro. Refinement of Datalog
programs. In MLnet Familiarization Workshop on ILP (KDD), pages 73–94, 1996.

4. T. Lang, M. Toussaint, and K. Kersting. Exploration in relational worlds. In
ECML/PKDD (2), pages 178–194, 2010.

5. C. Rodrigues, P. Gérard, C. Rouveirol, and H. Soldano. Incremental learning of
relational action rules. In ICMLA, 2010.

6. R. S. Sutton. Dyna, an integrated architecture for learning, planning, and reacting.
SIGART Bull., 2:160–163, July 1991.


