
Induction in First-Order Logic with
Temporal Metric Operators

Pedro Torres and Marian Ursu

Narrative and Interactive Media Group
Department of Computing

Goldsmiths, University of London
{p.torres,m.ursu}@gold.ac.uk

Abstract. A preliminary exploration of induction in the realm of first-
order logic enriched with temporal metric operators is presented. The
Interaction Modelling Language (Imola) is formally defined, it is shown
to have a lattice structure with respect to an extended subsumption rela-
tion and locally finite and complete refinement operators are introduced.

Keywords: temporal logic, metric operators, induction, social commu-
nication

1 Introduction

Automated Orchestration [14, 2] concerns making automatic camera decisions in
a multi-location multi-camera mediated video communication, relying on cues
automatically extracted in real time. Examples of such cues include face position,
voice activity, direction of gaze, focus of attention and keyword usage. First-order
logic seems suitable to describe background knowledge in this communication
scenario but it lacks the ability to express, in a compact way, particular sequences
of events and time intervals between them; such sequences of events constitute
the basic building blocks of most orchestration rules (c. f. [2]). In this paper, we
consider bringing metric temporal operators into first-order logic — to obtain the
Interaction Modelling Language (Imola) — and study its inductive properties.

Temporal Logic is a framework for reasoning about the temporal evolution
of properties of a system which has been the subject of intensive research in the
past decades and has found numerous applications in computer science. Tem-
poral Logic based on the two modalities since and until has been proved to be
equivalent in terms of expressiveness to monadic first-order logic [4]. However,
various incompleteness results [8, 13] led to the conclusion that many useful tem-
poral logics were not even recursively enumerable. Despite the negative results,
restrictions on the number of variables within temporal operators were shown
to yield decidable fragments of temporal logic [3] suggesting that carefully con-
straining the syntax of the language could be used to contain complexity issues.

Traditional approaches to temporal logic are qualitative with respect to time
in that there is no explicit handling of time differences between events. For



automated orchestration, a quantitative approach seems required. Although the
introduction of temporal metric operators in qualitative temporal logics often
leads to a drastic increase in complexity of satisfiability [11] — typically from NP
or PSPACE completeness, to EXPSPACE-completeness or even undecidability
— it has been shown that the temporal logic obtained by extending since/until
continuous temporal logic with the operator “sometime within n time units in
the future” is still PSPACE-complete [7].

With this in mind, we have chosen metric operators which, on the one hand,
provide sufficient expressive power for orchestration and, on the other hand,
have been shown not to bring major complexity issues. To further minimise
complexity, we restrict the usage of temporal operators to the front of literals.
Imola has been designed precisely with the goal of making orchestration rules
and associated background knowledge simple to express, while at the same time
both keeping tractability and maintaining a general purpose flavour. In this
preliminary exploration, we restrict our metric operators to “sometime within n
time units”, /n, “sometime later than n time units from now, .n, and “in exactly
n time units”, �n, but further extensions could be considered to encompass other
temporal relations such as those considered in [1].

Inductive properties of temporal logic have been studied in [5], where an
extension of a Prolog-style language which allows temporal operators such as
since and until in front of literals is identified and that approach is followed
closely here.

The structure of the paper is as follows. Firstly, Imola is formally defined
via its syntax (§2.1) and declarative semantics (§2.2). Secondly, it is shown that
the natural extension of first-order subsumption to Imola provides the set of
clauses with a lattice structure (§3.1), as proved by the existence of greatest
specialisation and least generalisation under subsumption for arbitrary pairs
of clauses. Additionally, both downward and upward refinement operators are
defined for Imola and they are shown to be locally finite and complete (§3.2).
The last section (§4) concludes and points directions of future work.

2 The IMOLA language

Analogously to other forms of temporal logic, Imola concerns reasoning about
time-dependent properties. However, in contrast with standard temporal logic,
Imola can make use of an explicit metric on time. Imola can express statements
such as “A happened and at most 5 time units after that B happened”, using
explicit temporal differences between events. The reason for the introduction of
such concrete manipulation of time stems from the particular application Imola
was designed for, automated orchestration, which was introduced in the previous
section.

2.1 Syntax

A signature Σ is a tuple (X ,F ,P, α), where X is a countable set of variable
symbols, F and P are, respectively, finite sets of function symbols and predicate



symbols, and α : F ∪ P → N is the arity function. For the remainder of this
section, let Σ = (X ,F ,P, α) be an arbitrary but fixed signature.

The set of Imola terms over signature Σ, denoted T (Σ), is inductively de-
fined by imposing that (i) each x ∈ X be a term and that (ii) each f(t1, . . . , tα(f))
be a term, provided ∀i.ti ∈ T (Σ).

The set of atoms over signature Σ, denoted A(Σ), is inductively defined as
the smallest set of objects closed under the following rules: (i) > and ⊥ are
atoms; (ii) each P (t1, . . . , tα(P )) is an atom, provided ∀i.ti ∈ T (Σ); (iii) if ϕ is
an atom, then, for any n ∈ N, ϕ ↑, ϕ ↓ and �nϕ are atoms; (iv) if ϕ and φ are
atoms, then, for any n ∈ N, ϕ /n φ and ϕ .n φ are atoms. The operators in rules
(iii) and (iv) will be called temporal operators.

The set of literals over signature Σ, denoted L(Σ) is inductively defined by
the same four rules as the set of atoms with the additional rule that (v) if ϕ is
a literal then so is ¬ϕ.

Formulas are defined inductively as the smallest set of objects closed under
the following rules: (i) if ϕ is a literal then it is a formula; (ii) if ϕ1 and ϕ2 are
formulas, then so are ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, ϕ1 → ϕ2, and ϕ1 ↔ ϕ2; (iii) if ϕ is a
formula and x ∈ X then both ∀x.ϕ and ∃x.ϕ are formulas. The Imola language
is defined as the set of all formulas.

A fact over signature Σ in Imola is simply an atom ϕ ∈ A(Σ) and is
usually written as “ϕ.”. A rule over signature Σ is either a fact over Σ or a pair
(ϕ, {ϕ1, . . . ϕn}), usually written “ϕ : − ϕ1, . . . , ϕn.” where ϕ is an atom, called
the head of the rule, and each ϕi is a literal, with the set {ϕ1, . . . ϕn} being called
the tail of the rule. In rules, negated atoms are written not(ϕ) which means
‘negation as failure’ and not logical negation, as usual in logic programming.
Note that the tail may contain literals which are not atoms, contrary to the
usual practice in Horn languages. Rules may be denoted simply by a set of
literals. An Imola program is defined as a finite set of rules over Σ.

A substitution is a mapping σ : X → T (Σ) for which only a finite number
of domain elements are not fixed points. Two terms t1, t2 ∈ T (Σ) are unifiable
if there is a substitution σ, called a unifier, s.t. σ(t1) = σ(t2). The unifier is
called a most general unifier, denoted σ = mgu(t1, t2), if, for every unifier σ1,
there is a substitution σ2 s.t. σ = σ1 ◦ σ2, where composition of substitution
is defined as usual. These definitions carry over to rules in the natural way.
Robinson’s unification theorem [12] extends to Imola and if two terms or rules
are unifiable, then there exists a unique mgu up to renaming of variables.

2.2 Declarative Semantics

The declarative semantics is defined through the logical consequence relation, |=.
For the remainder of this section, let Σ = (X ,F ,P, α) be an arbitrary but fixed
signature. Following the possible world semantics approach [6], an interpretation
is defined as a tuple

J = (UJ , S, s0, δ1, δ2, w, I)

where UJ is the universe of the interpretation, S is a set of states, s0 is the
inital state and is required to be an element of S, the δi ⊆ S×S are accessibility



relations (δ1 is the next state relation and δ2 its transitive closure), w : X → UJ
is an evaluation, and I is a function which associates a standard first-order
interpretation to each state.

Terms are evaluated in the natural way, by imposing J (t) = w(t) when t
is just a variable and J (t) = I(s0)(f) (J (t1), . . . ,J (tn)) for t = f(t1, . . . , tn).
To interpret a formula and give it meaning, the usual rules go for standard
non-temporal literals and the following rules are added to deal with the others:

J (ϕ .n φ) = 1 iff s0δ
m
1 s, J [s](φ) = 1, J [s0](ϕ) = 1 and m > n, for some s ∈ S

J (ϕ /n φ) = 1 iff s0δ
m
1 s, J [s](φ) = 1, J [s0](ϕ) = 1 and m < n, for some s ∈ S

J (�nφ) = 1 iff s0δ
n
1 s and J [s](φ) = 1

where J [s](φ) stands for the interpretation obtained by setting the initial state
of J to s.

An interpretation J is called a model of a formula ϕ, denoted J |= ϕ, if
J (ϕ) = 1. As usual, an Imola formula is valid, satisfiable or unsatifiable, if,
respectively, all interpretations are models of ϕ, there is an interpretation which
is a model of ϕ, or there is no interpretation which is a model of ϕ.

3 Induction in IMOLA

3.1 Lattice structure induced by subsumption

Let ϕ1 and ϕ2 be Imola literals other than ⊥ and >. As with standard sub-
sumption, ϕ1 subsumes ϕ2, denoted ϕ1 � ϕ2, iff there is a substitution θ such
that θ(ϕ1) = ϕ2. For the excluded cases involving ⊥ and >, define ⊥ � ϕ and
ϕ � >, for every literal ϕ.

Theorem 1. The set of literals L endowed with the quasi order � forms a
lattice.

Proof. It is sufficient to show that given two literals ϕ1 and ϕ2 there exist a
greatest specialisation and a least generalisation in L.

Regarding specialisation, define a function s : L × L → L such that: (i) if
ϕ1 and ϕ2 are unifiable with σ = mgu(ϕ1, ϕ2), then s(ϕ1, ϕ2) = σ(ϕ1) and (ii)
if they are not unifiable, then s(ϕ1, ϕ2) = true. Function s is indeed a greatest
specialisation. Details are left out.

Regarding generalisation, define a function g : L × L → L such that: (i) if
ϕ1 is an atom and ϕ2 is a negated atom or vice-versa, then g(ϕ1, ϕ2) = true;
(ii) if ϕ1 and ϕ2 are negated atoms1, with ϕ1 = not(φ1) and ϕ2 = not(φ2),
then g(ϕ1, ϕ2) = not g(φ1, φ2); (iii) if ϕ1 and ϕ2 are both atoms, there are
three distinct classes of atoms — predicates, unary temporal operators, binary
temporal operators.

For predicates with different symbols, define g(ϕ1, ϕ2) = false; for pred-
icate with equal symbols, P (t1, . . . , tn) and P (τ1, . . . , τn), define g(ϕ1, ϕ2) =

1 The lattice structure under analysis is for literals of the Horn-like language with
negation as failure, hence negation of ϕ is written not(ϕ).



P (LGS(t1, τ1), . . . ,LGS(tn, τn)) where LGS(t1, t2) can be computed using the
usual anti-unification algorithm [10]. For unary temporal operators, define, for
instance, g(φ1 ↑, φ2 ↑) = (g(φ1, φ2)) ↑, and similarly for the operators ↓ and
�n. For binary temporal operators, define, for instance, g(φ1 /n ψ1, φ2 /n ψ2) =
(g(φ1, φ2))/n (g(ψ1, ψ2)), and similarly for the operator .n. Function g is indeed
a least generalisation. Details are left out. ut

As in first-order logic, a rule R1 is said to subsume a rule R2, denoted R1 �
R2, if there exists a substitution θ such that θ(R1) ⊆ θ(R2), where the rules
are being represented as sets of literals. This gives rise to the following theorem
presented without proof.

Theorem 2. The set of Imola rules endowed with the quasi order � forms a
lattice.

3.2 Refinement Operators in Imola

Let Σ = (X ,F ,P, α) be a signature and φ ∈ L(Σ). Downward and upward
refinement operators for rules will now be only sketched due to space constraints.

The downward refinement operator ρd : 2L(Σ) → 22
L(Σ)

is defined as follows.
Let R be an Imola rule. It can be represented by a set of literals and R will be
overloaded to denote that set in the sequel. Define ρd as by the standard mapping
within first-order logic (c. f. Definition 17.14 in [9]) but extend it to temporal
operators by adding the rules: (i) if ϕ ∈ R then add �nϕ and not(�nϕ), for
every n, to the range of ρd; and similarly for all other unary temporal operators;
(ii) if ϕ1, ϕ2 ∈ R then add ϕ1 /n ϕ2 and not(ϕ1 /n ϕ2) , for every n, to the range
of ρd; and similarly for all other binary temporal operators.

The upward refinement operator ρu : 2L(Σ) → 22
L(Σ)

is defined similarly
by the natural extension of the standard mapping within first-order logic (c. f.
Definition 17.20 in [9]) and is ommitted for brevity.

Theorem 3. Both ρd and ρu refinement operators for Imola rules as defined
above are locally finite, complete but not proper.

Proof. Local finiteness is straightforward from both definitions as the number of
possible substitutions is finite. Regarding completeness, the standard first-order
proof extends to Imola since every most general literal is added to the set of
refinements. Details are left out. Absence of properness is directly deduced from
the fact that both refinement operators are locally finite and complete, and that
there are no ideal refinement operators in clausal languages with at least one
predicate or function symbol of arity greater or equal to 2. ut

4 Conclusions and Future Work

A novel first-order temporal language, Imola, is introduced, allowing explicit
time-metric statements such as “John spoke and less than 5 time units after



that, Mary spoke”, written Talk(john) /5 Talk(mary). Syntax and declarative
semantics for Imola are given. Some inductive properties of the language are
studied as well, and it is concluded that the set of Imola rules is given a lattice
structure by a natural extension of subsumption. Finally, upward and downward
refinement operators are defined and shown to be locally finite and complete.

Future work includes: (i) establishing Imola tableaux proof procedures which
are of practical use; (ii) considering efficient refinement strategies to discard vari-
ants of rules and improving search by making explicit use of the fact that time
is totally ordered (and therefore ϕ/4 φ implies ϕ/5 φ); (iii) study how extending
Imola’s expressive power (by allowing, for example, statements such as “A hap-
pened and at most 5 time units after that B happened, with C holding between
the two events”) affects tractability of proof procedures and PAC-learnability.

References

1. J. Allen. Maintaining knowledge about temporal intervals. Communications of the
ACM, 26(11):832–843, 1983.

2. M. Falelakis, R. Kaiser, W. Weiss, and M. Ursu. Reasoning for Video-mediated
Group Communication. In Proceedings of the IEEE International Conference on
Multimedia & Expo, Barcelona, Spain, 2011.

3. I. Hodkinson, F. Wolter, and M. Zakharyaschev. Decidable fragments of first-order
temporal logics. Annals of Pure and Applied Logic, 106:85–134, 2000.

4. H. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, UCLA, 1968.
5. R. Kolter. Inductive Temporal Logic Programming. PhD thesis, University of

Kaiserlautern, 2009.
6. S. Kripke. Semantical Analysis of Modal Logic. Zeitschrift fur Mathematische

Logic und Grundlagen der Mathematik, 9:67–96, 1963.
7. C. Lutz, D. Walther, and F. Wolter. Quantitative temporal logics over the re-

als: PSpace and below. Information and Computation/Information and Control,
205:99–123, 2007.

8. S. Merz. Decidability and Incompleteness Results for First-Order Temporal Logics
of Linear Time. Journal of Applied Non-classical Logic, 2, 1992.

9. S.-H. Nienhuys-Cheng and R. de Wolf. Foundations of Inductive Logic Program-
ming. Number 1228 in Lecture Notes in Computer Science. Springer, 1997.

10. G. D. Plotkin. A Note on Inductive Generalization. In Machine Intelligence,
volume 5, pages 153–163. Edinburgh University Press, 1970.

11. M. Reynolds. The Complexity of Temporal Logic over the Reals. Annals of Pure
and Applied Logic, 161:1063–1096, 1999.

12. J. A. Robinson. A Machine-Oriented Logic Based on the Resolution Principle.
Journal of the ACM, 12(1):23–41, 1965.

13. A. Szalas and L. Holenderski. Incompleteness of First-Order Temporal Logic with
Until. Journal of Theoretical Computer Science, 57:317–325, 1988.

14. M. Ursu, P. Torres, V. Zsombori, M. Frantzis, and R. Kaiser. Entertaining each
other from a Distance: Orchestrating Video Communication and Play. In Proceed-
ings of the ACM Multimedia Conference, Scottsdale (AZ), USA, 2011.


