Learning the Structure of Probabilistic Logic
Programs

Elena Bellodi and Fabrizio Riguzzi

ENDIF — University of Ferrara, Via Saragat 1, [-44122, Ferrara, Italy
{elena.bellodi,fabrizio.riguzzi}@unife.it

1 Introduction

The ability to model both complex and uncertain relationships among entities is
very important for learning accurate models of many domains. This originated a
growing interest in the field of Probabilistic Inductive Logic Programming, which
is based on languages that integrate logic programming and probability. Many
of these languages are based on the distribution semantics [I1], which underlies,
e.g., PRISM, the Independent Choice Logic, Logic Programs with Annotated
Disjunctions (LPADs) [12], ProbLog [3], CP-logic and others.

Recently approaches for learning the parameters of these languages have
been proposed: LeProbLog [5] uses gradient descent while COPREM [7] and
EMBLEM [2] use an Expectation Maximization approach in which the expecta-
tions are computed directly using Binary Decision Diagrams (BDD).

In this paper we present the algorithm SLIPCASE for “Structure LearnIng of
ProbabilistiC logic progrAmS with Em over bdds”. It performs a beam search in
the space of LPADs using the log likelihood of the data as the guiding heuristics.
To estimate the log likelihood of theory refinements it performs a limited number
of Expectation Maximization iterations of EMBLEM.

2 Probabilistic Logic Programming

The distribution semantics [I1] is one of the most interesting approaches to
the integration of logic programming and probability. It was introduced for the
PRISM language but is shared by many other languages. In this paper we will
use LPADs for their general syntax. We review here the semantics for the case
of no function symbols for the sake of simplicity.

Formally a Logic Program with Annotated Disjunctions [12] consists of a
finite set of annotated disjunctive clauses. An annotated disjunctive clause C; is
of the form hil : Hil; ceny htnz : Hzn, : —b“, ey bi"”. In such a clause h“, RPN hini
are logical atoms and b;1, ..., by, are logical literals, {II;1, ..., II;,,} are real
numbers in the interval [0, 1] such that 22:1 I, < 1. b1, .., by, is called
the body and is indicated with body(C;). Note that if n; = 1 and II;; = 1 the
clause corresponds to a non-disjunctive clause. If 221:1 II;;, < 1 the head of the
annotated disjunctive clause implicitly contains an extra atom null that does

not appear in the body of any clause and whose annotation is 1 — >, IT;;. We
denote by ground(T) the grounding of an LPAD T.

An atomic choice is a triple (C;,0;,k) where C; € T, §; is a substitution
that grounds C; and k € {1,...,n;}. In practice C;0; corresponds to a random
variable X;; and an atomic choice (Cj,0;, k) to an assignment X,;; = k. A set of
atomic choices k is consistent if only one head is selected for a ground clause. A
composite choice £ is a consistent set of atomic choices. The probability P(k) of
a composite choice k is the product of the probabilities of the individual atomic
choices, i.e. P(k) = H(Chewk)eﬁ .

A selection o is a composite choice that, for each clause C;0; in ground(T),
contains an atomic choice (C;, 0, k). A selection o identifies a normal logic pro-
gram w, defined as w, = {(hix < body(C;))8;(C;,0;,k) € o}. w, is called a
world of T. Since selections are composite choices, we can assign a probability
to worlds: P(wo) = P(0) = [(¢, 6, 1)eo ILik- We denote the set of all worlds of
a program by W.

We consider only sound LPADs in which every possible world has a total
well-founded model. We write w, = @ to mean that the query @ is true in the
well-founded model of the program w,.

Let P(W) be the distribution over worlds. The probability of a query @ given
a world w is P(Qw) =1 if w = @ and 0 otherwise. The probability of a query
Q@ is given by

P@Q) =Y P@Quw)=)Y PQuPw) = 3 Pw) (1)

weWw weWw weW:wkE=Q

Ezxample 1. The following LPAD T encodes a very simple model of the develop-
ment of an epidemic or pandemic:

Cy = epidemic : 0.6; pandemic : 0.3 : — flu(X), cold.

Cy = cold : 0.7.

Cy = flu(david).

C3 = flu(robert).

This program models the fact that if somebody has the flu and the climate
is cold, there is the possibility that an epidemic or a pandemic arises.

It is often unfeasible to find all the instances where the query is true so inference
algorithms find instead explanations for the query, i.e. composite choices such
that the query is true in all the worlds whose selections are a superset of them.
Explanations however, differently from possible worlds, are not necessarily mu-
tually exclusive with respect to each other, so the probability of the query can
not be computed by a summation as in . The explanations have first to be
made disjoint so that a summation can be computed. To this purpose Binary
Decision Diagrams are used.

EMBLEM [2] applies the algorithm for performing EM over BDDs proposed
in [8] to the problem of learning the parameters of an LPAD. EMBLEM takes as
input a number of goals that represent the examples. For each goal it generates
the BDD encoding its explanations. The typical input for EMBLEM will be a

set of interpretations, i.e., sets of ground facts, each describing a portion of the
domain of interest. The user has to indicate which, among the predicates of the
input facts. are target predicates: the facts for these predicates will then form the
queries for which the BDDs are built. The predicates can be treated as closed-
-world or open-world. In the first case the body of clauses is resolved only with
facts in the interpretation. In the second case, the body of clauses is resolved
both with facts in the interpretation and with clauses in the theory. If the last
option is set and the theory is cyclic, we use a depth bound on SLD-derivations
to avoid going into infinite loops, as proposed by [6]. Then EMBLEM enters the
EM cycle, in which the steps of expectation and maximization are repeated until
the log-likelihood of the examples reaches a local maximum. Expectations are
computed directly over BDDs using the algorithm of [§].

3 SLIPCASE

SLIPCASE learns an LPAD by starting from an initial theory and by perform-
ing a beam search in the space of refinements of the theory guided by the log
likelihood of the data.

First the parameters of the initial theory are computed using EMBLEM and
the theory is inserted in the beam (see Algorithm [I]). Then an iteration is entered
in which at each step the theory with the highest log likelihood is removed from
the beam. Such a theory is the first of the beam since the theories are kept
ordered.

Then SLIPCASE finds the set of refinements of the selected theory that are
allowed by the language bias. modeh and modeb declarations in Progol style are
used to this purpose. The refinements considered are: the addition of a literal
to a clause, the removal of a literal from a clause, the addition of a clause with
an empty body and the removal of a clause. The refinements must respect the
input-output modes of the bias declarations and the resulting clauses must be
connected.

For each refinement an estimate of the log likelihood of the data is computed
by running the procedure BOUNDEDEMBLEM (see Algorithm that performs
a limited number of Expectation-Maximization steps. BOUNDEDEMBLEM dif-
fers from EMBLEM only in line 10, where it imposes that the iterations are at
most NMazx.

Once the log likelihood for each refinement is computed, the best theory
found so far is possibly updated and each refinement is inserted in order in the
beam. At the end the parameters of the best theory found so fare are computed
with EMBLEM and the resulting theory is returned.

We decided to follow this approach rather than using a scoring function as
proposed in [] for Structural EM (SEM) because we found that using the log
likelihood was giving better results with a limited additional cost. We think
that is due to the fact that, while in SEM the number of incomplete or unseen
variables is fixed, in SLIPCASE the revisions can introduce or remove unseen
variables from the underlying Bayesian network.

Algorithm 1 Procedure SLIPCASE

1: function SLIPCASE(Th, MaxSteps, €, d,b, NMax)

Build BDDs
(LL,Th) =EMBLEM(Th, €,6)
Beam = [(Th,LL)]
BestLL = LL
BestTh =Th
Steps =1
repeat
Remove the first couple (T'h, LL) from Beam
Find all refinements Ref of Th
for all Th’ in Ref do
(LL",Th') =BouNDEDEMBLEM(Th', €, 5, N Max)
if LL” > BestLL then
Update BestLL, BestTh
end if
Insert (Th”,LL") in Beam in order of LL"
if size(Beam) > b then
Remove the last element of Beam
end if
end for
Steps = Steps + 1
until Steps > MaxzSteps or Beam is empty
(LL, ThMaxz) =EMBLEM(BestTh,¢€,5)
return ThMax

25: end function

Algorithm 2 Procedure BoundedEMBLEM

1: function BOUNDEDEMBLEM(T heory, €, 8, N Max)

2: Build BDDs

3: LL = —inf

4: N=0

5: repeat

6: LLy=LL

7 LL = EXPECTATION(BDDs)
8: MAXIMIZATION

9: N=N+1

10: until LL — LLo < eV LL —LLy < —LL-6§VN > NMaz
11: Update the parameters of Th
12: return LL, Th

13: end function

4 Experiments

We implemented SLIPCASE Yap Prologﬂ and we tested it on two real world
datasets: HIV[I] and UW—CSEﬂ We compared SLIPCASE with SEM-CP-logic
[10] and with the algorithm for learning Markov Logic Networks using Structural
Motifs (LSM) [9]. All experiments were performed on Linux machines with an
Intel Core 2 Duo E6550 (2333 MHz) processor and 4 GB of RAM.

SLIPCASE offers the following options: putting a limit on the depth of deriva-
tions, necessary for problems that contain cyclic clauses; setting the number of it-
erations N Mazx for BOUNDEDEMBLEM; setting the size of the beam, the great-
est number of variables in a learned rule (max_var) and of rules (maz_rules) in

the learned theory.

!http://www.dcc.fc.up.pt/~vsc/Yap/
2 http://alchemy.cs.washington.edu/data/uw-cse

http://www.dcc.fc.up.pt/~vsc/Yap/
http://alchemy.cs.washington.edu/data/uw-cse

For all experiments with SLIPCASE we used a beam size of 5, max_var=5,
maz_rules=10 and NMax = 400 since we observed that EMBLEM usually
converged quickly.

The HIV dataset records mutations in HIV’s reverse transcriptase gene in
patients that are treated with the drug zidovudine. It contains 364 examples,
each containing facts for six classical zidovudine mutations. The goal is to dis-
cover causal relations between the occurrence of mutations in the virus, so all
the predicates were set as target. The input initial theory was composed of six
probabilistic clauses of the form target_mutation : 0.2. The language bias allows
each atom to appear in the head and in the body. We used a five-fold cross-
validation approach, by considering a single fold as the grouping of 72 or 73
examples.

We ran SLIPCASE with a depth bound equal to three and obtained a final
structure with 6 rules for each fold. For SEM-CP-logic, we tested the theory ob-
tained by it that is reported in [I] over each of the five folds. For LSM, we used
the generative training algorithm to learn weights, because all the predicates
were considered as target, with the option -queryEvidence (to mean that all
the groundings of the query predicates not in the database are assumed false evi-
dence), and the MC-SAT algorithm for inference over the test fold, by specifying
all the six mutations as query atoms. Table [1| shows the AUCPR and AUCROC
averaged over the five folds for the algorithms.

The UW-CSE dataset contains information about the Computer Science de-
partment of the University of Washington, and is split into five mega-examples,
each containing facts for a particular research area. The goal is to predict the
advisedBy/2 predicate, namely the fact that a person is advised by another
person: this was our target predicate. The input theory for SLIPCASE was
composed by two clauses of the form advisedby(X,Y") : 0.5.. We used a five-fold
cross-validation approach. We ran SLIPCASE with no depth bound. For LSM,
we used the preconditioned rescaled conjugate gradient discriminative training
algorithm to learn weights, by specifying advisedby/2 as the only non-evidence
predicate plus the option —~queryEvidence, and the MC-SAT algorithm for in-
ference over the test fold, by specifying advisedby/2 as the query predicate.
Table [1] shows the average AUCPR and AUCROC for both the algorithmg’}
while table [2] shows the learning times in hours for both datasets.

As the tables show, SLIPCASE was able to achieve higher AUCPR and
AUCROC with respect to LSM on both datasets and with respect to SEM-
CP-logic on the HIV dataset. These results were also achieved using similar or
smaller computation time with respect to LSM.

References

1. Beerenwinkel, N., Rahnenfiihrer, J., Ddumer, M., Hoffmann, D., Kaiser, R., Selbig,
J., Lengauer, T.: Learning multiple evolutionary pathways from cross-sectional

3 On the first fold of UW-CSE LSM gave a segmentation error so the averages are
computed over the remaining four folds.

Table 1. Results of the experiments on all datasets in terms of the average of the Area
Under the PR Curve and under the ROC Curve.

10.

11.

12.

Dataset AUCPR AUCROC

Slipcase LSM SEM-CP-logic Slipcase LSM SEM-CP-logic
HIV 0.623 0.381 0.579 0.733 0.652 0.721
UW-CSE 1 0.0117 - 1 0.518 -

Table 2. Execution time in hours of the experiments on all datasets.

Time(h)
Dataset Slipcase LSM
HIV 0.010 0.003

UW-CSE 0.040 2.520

data. Journal of Computational Biology 12(6), 584-598 (2005)

. Bellodi, E., Riguzzi, F.: Expectation Maximization over binary decision diagrams

for probabilistic logic programs. Intel. Data Anal. (to appear)

De Raedt, L., Kimmig, A., Toivonen, H.: ProbLog: A probabilistic prolog and
its application in link discovery. In: International Joint Conference on Artificial
Intelligence. pp. 2462—-2467. AAAI Press (2007)

Friedman, N.: The Bayesian structural EM algorithm. In: Conference on Uncer-
tainty in Artificial Intelligence. pp. 129-138. Morgan Kaufmann (1998)
Gutmann, B., Kimmig, A., Kersting, K., Raedt, L.D.: Parameter learning in prob-
abilistic databases: A least squares approach. In: European Conference on Machine
Learning and Knowledge Discovery in Databases. LNCS, vol. 5211, pp. 473-488.
Springer (2008)

Gutmann, B., Kimmig, A., Kersting, K., Raedt, L.: Parameter estimation in
ProbLog from annotated queries. Tech. Rep. CW 583, KU Leuven (2010)
Gutmann, B., Thon, I., De Raedt, L.: Learning the parameters of probabilistic
logic programs from interpretations. Tech. Rep. CW 584, KU Leuven (2010)
Ishihata, M., Kameya, Y., Sato, T., Minato, S.: Propositionalizing the em algorithm
by bdds. In: Late Breaking Papers of the International Conference on Inductive
Logic Programming. pp. 44-49 (2008)

Kok, S., Domingos, P.: Learning markov logic networks using structural motifs.
pp. 551-558. Omnipress (2010)

Meert, W., Struyf, J., Blockeel, H.: Learning ground CP-Logic theories by leverag-
ing Bayesian network learning techniques. Fundamenta Informaticae 89(1), 131—
160 (2008)

Sato, T.: A statistical learning method for logic programs with distribution seman-
tics. In: International Conference on Logic Programming. pp. 715-729. MIT Press
(1995)

Vennekens, J., Verbaeten, S., Bruynooghe, M.: Logic programs with annotated
disjunctions. In: International Conference on Logic Programming. LNCS, vol. 3131,
pp. 195-209. Springer (2004)

	Learning the Structure of Probabilistic Logic Programs

