
The expressive power of
first-order logical decision trees

Joris J.M. Gillis? and Jan Van den Bussche

Hasselt University and transnational University of Limburg

Abstract. This paper characterises the expressive power of first-order
logical decision trees (FOLDTs) as a fragment of first-order logic. Specifi-
cally, using FOLDTs one can express precisely the boolean combinations
of existential formulas. FOLDTs are also slightly generalized to formally
allow for output variables.

1 Introduction

In logical and relational learning [4], the logical languages that can be learned
most effectively offer rather limited expressiveness, typically not going beyond
the existential fragment of first-order logic. Indeed, this is the standard balancing
exercise between expressive power and efficiency that one faces everywhere in the
fields of AI and computer science. First-order logical decision trees (FOLDTs)
[1] are one of the few logical languages used in ILP that offer higher expressive
power, yet can still be learned effectively (cf. the Tilde system, part of the ACE-
ilProlog system [2]). FOLDTs allow the expression of certain properties involving
universal quantification in a natural and direct manner. For example, consider
the vocabulary with a binary relation symbol E, used to indicate the edges of
a directed graph, and unary relation symbols R and B, used to indicate the
“red” and the “blue” nodes in the graph. Then the very simple FOLDT shown
in Fig. 1 expresses the property that every blue node has edges to all red nodes,
expressed in first-order logic as

∀x(B(x)→ ∀y(R(y)→ E(x, y))).

A natural question now, which has remained unanswered in the literature so
far, is, exactly which properties can be expressed by FOLDTs? Blockeel and De
Raedt [1] have given a translation of FOLDTs into first-order logic (FOL), but
exactly which fragment of FOL do we cover by FOLDTs? In the present paper
we answer the question and show the equivalence between FOLDTs and the
fragment of FOL formed by all boolean combinations of existential formulas. For
example, the above formula can be rewritten as the negation of an existential
formula:

¬∃x∃y(B(x) ∧R(x) ∧ ¬E(x, y))

? Ph.D. Fellow of the Research Foundation Flanders (FWO).

2 Joris J.M. Gillis and Jan Van den Bussche

no yes

B(x) ∧R(y) ∧ ¬E(x, y)

Fig. 1. Example of a FOLDT.

and indeed this way of expression closely matches the FOLDT of Fig. 1.
Our result implies that properties whose expression require the alternation

of quantifiers in an essential way are not expressible as a FOLDT. A typical
example of such a property is “there exists a blue node with edges to all red
nodes”, or in FOL,

∃x(B(x) ∧ ∀y(R(y)→ E(x, y))).

We will work with a slight generalization of FOLDTs, in comparison to their
original definition, so that not only boolean queries but also k-ary queries can
be expressed for k > 0. In the context of full FOL, the distinction between
boolean and k-ary queries is not essential. In contrast, we will see that a k-
ary query may be expressible by a FOLDT, while the corresponding boolean
nonemptiness query is not.

2 Preliminaries

To avoid misunderstanding, we fix terminology and notation for some well-known
notions from logic. A relational vocabulary is a set τ of relation symbols, each
with an associated arity (a natural number). A τ -interpretation I consists of a
nonempty set dom(I), called the domain of I, and a k-ary relation RI on dom(I),
for each R ∈ τ , with k the arity of R.

A boolean query over τ is a function Q from the set of τ -interpretations to the
two-element set {yes,no}. In the most basic classification setting of learning from
interpretations, the learner is provided with some yes- and some no-instances of
a boolean query Q, and must infer a classifier, i.e., an expression for Q. Often
this expression can be translated in a first-order logic (FOL) sentence; this is the
case, for example, with classifiers in the form of recursion-free Prolog programs.
A FOL sentence over τ is a FOL formula without free variables and involving
only the relation symbols from τ , besides the equality symbol. The boolean query
Q expressed by such a sentence ϕ is defined as follows: for every τ -interpretation
I, we have that Q(I) = yes if and only if I |= ϕ. Here, I |= ϕ denotes that ϕ is
true in I.

For any natural number k, a k-ary query over τ is a function Q that maps
each τ -interpretation I to a k-ary relation on dom(I). A classical example would
be where τ consists of the binary relation symbol Parent , and Q, given a concrete

The expressive power of first-order logical decision trees 3

parent relation, outputs the corresponding grandparent relation. The relevance
of k-ary queries for relational learning lies in the setting of predicate description.
Here, the learner is provided with examples, where each example consists of a τ -
interpretation I and some positive and negative Q-facts (e.g., a parent relation,
some pairs in the grandparent relation; and some pairs not in the grandparent
relation); again the task is to come up with an expression for Q.

For a FOL formula ϕ(x1, . . . , xk) with free variables among x1, . . . , xk, the k-
ary query Q expressed by the expression {(x1, . . . , xk) | ϕ} is defined as follows:
for every τ -interpretation I, we have that

Q(I) = {(a1, . . . , ak) ∈ dom(I)k | I |= ϕ[x1/a1, . . . , xk/ak]}

where I |= ϕ[x1/a1, . . . , xk/ak] denotes that ϕ becomes true in I if we substitute
free variable xi by value ai for i = 1, . . . , k. For example, the grandparent query
can be expressed as

{(x, y) | ∃z(Parent(x, z) ∧ Parent(z, y))}.

Boolean queries are just a special kind of k-ary queries. Indeed, a boolean
query can be thought of as a 0-ary query by identifying the nonempty nullary
relation {()} with ‘yes’ and the empty nullary relation with ‘no’. The class of
queries expressed by FOL formulas is called the class of first-order queries.

3 First-Order Logical Decision Trees

Fix a relational vocabulary τ . A first-order logical decision tree (FOLDT) over
τ is a triple (T, λ, x̄), such that

– T is a finite binary tree;
– λ is a labeling function on the nodes of T such that each internal node

(including the root) is labeled with a conjunction of literals over τ , and each
leaf node is labeled with ‘yes’ or ‘no’; the label of node n is denoted by λn;

– x̄ is a tuple of distinct variables, called the output variables.1

When no confusion can arise, we will refer to the FOLDT simply as T and leave
λ and x̄ implicit.

An example of a FOLDT over the vocabulary consisting of the two binary
relation names R and S, is shown in Figure 2. In figures we use the convention of
underlining the output variables; in this case, there is only one output variable,
namely x.
1 The original definition of FOLDTs did not have output variables; we will come back

to this feature later. Also, in the original definition, leaf nodes can take labels from
any finite set of class names rather than just ‘yes’ and ‘no’. If we are interested in
the expressive power of FOLDTs in their capacity of describing any one particular
class, we can identify that class with ‘yes’ and the other classes with ‘no’. Finally, the
original definition requires that a variable introduced in some node must not be used
in the right subtree of that node. This requirement guarantees that the first-order
logic translation of the FOLDT does not reuse variables, and makes the FOLDT
more easy to understand, but is otherwise inessential.

4 Joris J.M. Gillis and Jan Van den Bussche

no yes

no

R(x, y1)

S(x, y2)

Fig. 2. FOLDT expressing the first-order query {x | ∃y R(x, y) ∧ ¬∃y S(x, y)}.

A FOLDT T expresses a k-ary first-order query QT , where k equals the arity
of the tuple x̄ of output variables. The query QT is defined by translating T into
a FOL formula ΦT (x̄), then defining QT as the query expressed as {x̄ | ΦT }. So
it remains to define ΦT . We do this in three steps.

1. We first define formulas αn for every node n of T :

αn :=


true if n is the root of T ;
αp ∧ λp if n is the left child of node p;
αp ∧ ¬∃ȳ(αp ∧ λp) if n is the right child of node p.

where ȳ is the set of free variables in αp ∧ λp that are not output variables.
2. For each node n we next define βn as the formula ∃z̄(αn), where z̄ is the set

of free variables in αn that are not output variables.
3. Finally, we define

ΦT :=
∨
{β` | ` is a leaf node labeled yes}.

It is readily verified that this definition of the semantics of FOLDTs conforms
to the original definition given by Blockeel and De Raedt [1, Fig. 2], at least when
the set of output variables is empty.

Example 1. Consider the FOLDT T of Fig. 2. Let us number the root, the left
child of the root, and the only leaf node labeled yes, as 1, 2, and 3, respectively.
Then

α1 = true
α2 = true ∧R(x, y1) ≡ R(x, y1)
α3 = R(x, y1) ∧ ¬∃y1∃y2(R(x, y1) ∧ S(x, y2))

and we obtain ΦT = ∃y1(α3) which can be simplified to

∃y1R(x, y1) ∧ ¬∃y2 S(x, y2).

The expressive power of first-order logical decision trees 5

Note that if we would modify the FOLDT by using the same variable y in-
stead of y1 and y2, we would obtain a different meaning, namely, ∃y R(x, y) ∧
¬∃y(R(x, y) ∧ S(x, y)).

4 The expressive power of FOLDTs

Our main result characterizes the expressive power of FOLDTs as follows.

Theorem 1. A k-ary query is expressible by a FOLDT if and only if it is ex-
pressible by a boolean combination of existential FOL formulas.

Here, an existential FOL formula is of the form ∃ȳ ψ(x̄, ȳ), where ψ is quantifier-
free. In other words, a formula is existential if it can be written such that all
the quantifiers are in front (prenex normal form) and are existential. Boolean
combinations are then built up from existential formulas using conjunction, dis-
junction, and negation, but no further quantification. The existential fragment of
FOL is usually denoted by Σ1, and we denote the class of boolean combinations
of Σ1-formulas by BC (Σ1).

We omit the proof of the theorem in this extended abstract, but provide
some comments on the issues involved. First, the reader should not be lulled
into interpreting our theorem as merely stating that the FOL translation ΦT of
a FOLDT T is in BC (Σ1); in fact, it is not. Indeed, the gist of the proof of
the only-if direction consists of showing that ΦT , for any FOLDT, can always
be simplified into an equivalent BC (Σ1) formula. Example 1 already gave an
example of this simplification.

The if-direction of the theorem follows from three basic constructions:

1. Every Σ1-expressible query is expressible by a FOLDT. Indeed, consider a
Σ1-formula ϕ(x̄) of the form ∃ȳ ψ(x̄, ȳ). We can put ψ in DNF as γ1∨· · ·∨γ`.
We construct a FOLDT for ϕ as follows. The root is labeled γ1. From the
root descends a chain of right children, labeled γ2 until γ`. Every node on
this linear chain, including the root, gets as left child a leaf labeled yes.
Finally, the rightmost node on the chain (the one labeled with γ`) gets as
right child a leaf labeled no. The set of output variables is x̄.

2. The conjunction of two FOLDT-expressible queries is FOLDT-expressible.
Indeed, if we have two FOLDTs T1 and T2 then we can form their conjunc-
tion by attaching a copy of T2 at every leaf node of T1 labeled yes. This
construction is only correct if we make sure in advance (without loss of gen-
erality) that T1 and T2 have disjoint sets of non-output variables. The output
variables of the resulting FOLDT are the union of those of T1 and T2.

3. The negation of a FOLDT-expressible query is FOLDT-expressible. Indeed,
to negate a FOLDT it suffices to swap the leaf labels yes and no.

It can be proven that the above three constructions are correct (proof omitted).

6 Joris J.M. Gillis and Jan Van den Bussche

5 Discussion

Our result places the expressive power of FOLDTs at a rather low position in the
quantifier alternation hierarchy for first-order logic [3]. We have already seen Σ1

as the existential fragment of first-order logic. The next level in this hierarchy is
Σ2, consisting of all formulas that can be put in prenex form with a quantifier
prefix of the form ∃∗∀∗. Similarly, Π2 consists of the ∀∗∃∗ formulas. It is easy
to see that BC (Σ1) formulas can be put both in Σ2 form and in Π2 form. This
places the FOLDT-expressible queries in the class known as ∆2: the queries
expressible both by a Σ2-formula and by a Π2-formula.

Now it is known that there are queries expressible in Π2 but not in Σ2,
and vice versa, even in restriction to finite interpretations [3]. Any such queries
are not FOLDT-expressible. For example, the boolean query mentioned in the
Introduction “there exists a blue node with edges to all red nodes”, ∃x∀y(B(x)∧
(R(y)→ E(x, y))), is a typical example of a query expressible in Σ2 but not in
Π2, and, consequently, not as a FOLDT. Likewise, the boolean query “all blue
nodes have an edge to some red node”, ∀x∃y(B(x)→ (R(y)∧E(x, y))) is in Π2

but not in Σ2 and hence again not FOLDT-expressible.
A somewhat remarkable consequence is that a k-ary query may be FOLDT-

expressible, while the corresponding boolean nonemptiness query is not. For
example, consider the unary query Q: “list all blue nodes that have edges to all
red nodes”. This query is Π1-expressible as {x | B(x) ∧ ∀y(R(y) → E(x, y))}
and hence expressible by a FOLDT with output variable x. The boolean query
Q 6= ∅ however, amounts to ∃x(B(x) ∧ ∀y(R(y)→ E(x, y))) which we have just
seen to be not FOLDT-expressible.

Acknowledgment

We thank Hendrik Blockeel and Jan Struyf for interesting discussions and help
with the Tilde system.

References

1. Blockeel, H., De Raedt, L.: Top-down induction of first-order logical decision trees.
Artificial Intelligence 101(1–2), 285–297 (1998)

2. Blockeel, H., Dehaspe, L., Demoen, B., Janssens, G., Ramon, J., Vandecasteele, H.:
Improving the efficiency of inductive logic programming through the use of query
packs. Journal of Artificial Intelligence Research 16, 135–166 (2002)

3. Chandra, A., Harel, D.: Structure and complexity of relational queries. J. Comput.
Syst. Sci. 25, 99–128 (1982)

4. De Raedt, L.: Logical and Relational Learning. Springer (2008)

