
Kernels for EL++ Description Logic Concepts

 Lukasz Józefowski1, Agnieszka Lawrynowicz1, Joanna Józefowska1, Jedrzej
Potoniec1, and Tomasz Lukaszewski

Institute of Computing Science, Poznan University of Technology, ul. Piotrowo 2,
60-965 Poznan, Poland

{jjozefowski,alawrynowicz,jjozefowska,jpotoniec,tlukaszewski}@cs.put.poznan.pl

1 Introduction

Various kernel functions have been introduced for structured data such as se-
quence data, graphs, text, images or vectors [1]. This paper deals with structured
data in the form of description logic (DL) [2] knowledge bases. Description log-
ics (DLs) are an important formalism as they provide theorethical foundations
for the formal ontologies expressed in Web Ontology Language (OWL)1. Kernels
for DLs may be exploited to solve a multitude of tasks that may be dealt with
similarity-based methods, especially in the context of so-called Semantic Web
applications. However, so far only very few kernels have been introduced for
DLs, and no kernels for EL++ in particular.

The contribution of this paper is in proposing two kernel functions for mea-
suring similarity of concepts represented in the EL++ description logic [3] that
are both based on the proposed canonical form of EL++ concepts. EL++ is an
interesting fragment of DL languages family. It has been chosen as an underlying
formalism for OWL 2 EL standard due to its practical computational features
(tractable reasoning), and in the same time as a language that embraces the
expressivity of several major real-life ontologies, especially from life sciences do-
main, such as SnoMed, Gene Ontology, or most of GALEN.

2 Knowledge representation language

2.1 Description logics as knowledge representation formalism

Basic elements in DLs are: atomic concepts (denoted by A), and abstract atomic
roles (denoted by R, S). Complex descriptions (denoted by C, D) are built by
using concept and role constructors. Furthermore, let by NC , NR, NI denote the
sets of concept names, abstract role names and individual names respectively.

A DL knowledge base, KB, is formally defined as: KB = (T ,A). T is called a
TBox, and it contains axioms dealing with how concepts and roles are related to
each other. In particular, we will further refer to axioms such as: C v D(R v S)
or C ≡ D(R ≡ S). Axioms of the first kind are called inclusions, while axioms
of the second kind are called equalities. An equality whose left-hand side is an

1 http://www.w3.org/TR/owl-features

Table 1: Transformation rules for a concept C to an EL++ canonical form.
TR1 if C = A ∧ C ≡ D ∈ T then C ← D (replace C by D)
TR2 if C = A ∧ C v D ∈ T then C ← C uD
TR3 if C = {a} ∧KB |= A(a) then C ← C u A

atomic concept is a definition. An inclusion whose left-hand side is an atomic
concept is a partial definition. The atomic concepts occurring in T are divided
into two sets: the symbols that occur on the left-hand side of definition axioms,
called defined concepts, and the symbols that occur only on the right-hand side of
the axioms, called primitive concepts. Importantly, in this work we require that
a terminological part T of our KB is acyclic. A is called an ABox. It contains
assertions about individuals such as C(a) (a is an instance of the concept C)
and R(a, b) (a is R-related to b).

DLs may also support reasoning with concrete datatypes such as strings or
integers. Within this work, we are interested in concrete roles P which are in-

terpreted as binary relations P I ⊆ ∆I ×∆D. We will further denote by NP a
set of concrete role names.

2.2 Canonical Form for EL++ Concepts

In order to compute the kernels proposed in this paper to measure the similarity
of given concepts, we require these concepts to be previously transformed to a
normal form. We assume that all the atomic concepts appearing in considered
EL++ concept descriptions are primitive concepts. To ensure this, we envisage a
pre-processing step that consist on expanding all defined concepts in a given con-
cept description. In order to further exploit the semantics of a KB, we envisage
also other pre-processing rules.Let by C denote a component of a given concept
description that is to be transformed, and assume to operate on a TBox T in
normal form [3]. Then the rules from Tab. 1 are exhaustively applied. Note that
by an application of the transformation rules, we avoid such situation, where, for
example, a defined concept compared by our measures with a concept formed
by its right-hand side of a definition would be assessed as totally dissimilar.

In order to define the canonical form, let us first denote by primn(C) the set
of all the primitive and nominal concepts that occur at the top-level conjunction
of C, and by exR(C) denote the set of the concept descriptions C ′ that occur in
existential restrictions ∃Ri.C

′ at the top-level conjunction of C.

Definition 1 (EL++ canonical form). A concept description C is in EL++

canonical form iff C ≡ > or C ≡ ⊥ or if

C =
l

Bi∈primn(C)

Bi u
l

Rk∈NR

C′∈exR(C)

∃Rk.C
′ u

l

Pl∈NP

∃Pl.f

where for any Rk ∈ NR, every concept description C′ in exR(C) is in canonical form.
In general, each of the higher level intersection may be also replaced by >.

3 Kernels for concepts in EL++ canonical form

It may be observed that the canonical form for concepts apart from top concept
> and bottom concept ⊥ is a composite structure that can consist of three
basic parts: primitive and nominal concepts part, abstract role part and concrete
role part, denoted by PN , ABST , CONC, respectively. Without the loss of
generality let us also assume that > and ⊥ belong to PN . Each concept in the
canonical form consists of at most three different basic parts. Let C be a concept
in EL++ that is in the canonical form. Further, let WPN , WABST and WCONC

denote the sets of all proper words in EL++ that can appear respectively in PN ,
ABST and CONC parts of any concept of that language. Let us assume that
in case where any of the parts: PN , ABST , CONC is empty, it is represented
by special EMPTY word that does not belong to the language EL++. Let us
define the following new parts PN ′ = PN if PN part is not empty and PN ′ =
EMPTY otherwise, ABST ′ = ABST if ABST is not empty and ABST =
EMPTY otherwise, finally CONC ′ = CONC if CONC part is not empty
and CONC ′ = EMPTY otherwise. Let us define the following sets: W ′PN =
WPN ∪{EMPTY }, W ′ABST = WABST ∪{EMPTY } and W ′CONC = WCONC ∪
{EMPTY }. Let us now transform each concept C that is in canonical form into
a 3-tuple in W ′PN ×W ′ABST ×W ′CONC . Let us define KPN , KABST , KCONC

to be a kernel for respectively, primitive and nominal part, abstract role part
and concrete role part of concept C. The similarities between any two concepts
C1 and C2 in the EL++ canonical form, can be calculated using the following
convolution kernel [4, 6]

K⊕,R(C1, C2) = KPN (C1, C2) + KABST (C1, C2) + KCONC(C1, C2) (1)

KPN is a kernel for primitive and nominal part of C that is defined on WPN ×
WPN . This kernel may by extended using zero extension to the kernel on W ′PN×
W ′PN by defining KPN (x, y) = 0 if either x or y is not in WPN i.e. if x or y is the
EMPTY word. Kernel KABST defined on WABST ×WABST can be zero extended
to the kernel on W ′ABST ×W ′ABST by defining KABST (x, y) = 0 if either x or y is
not in WABST i.e. if x or y is the EMPTY word. Finally, kernel KCONC defined
on WCONC ×WCONC can be zero extended to the kernel on W ′CONC ×W ′CONC

by defining KCONC(x, y) = 0 if either x or y is not in WCONC .Now the KPN

kernel for PN parts of two concepts C1 and C2 in the EL++ canonical form can
be defined as follows using set intersection kernel [1].

KPN (C1, C2) = k∩(primn(C1), primn(C2)) (2)

Observe now that the ABST role part of concept C is a composite structure
that can be represented by a set of tuples of the form (Ri, C

′), where Ri is a
role in ABST parts and C ′ is a filler of the role Ri. For such structure the
decomposition relation [6] RABST can be defined in the following way.

Definition 2. Let X be a set of tuples of part ABST of concept C and x = xABST ∈
ABST define elements of X. The relation that x is a part of X can be represented by
relation RABST on set X ×X, where RABST (x, x) is true iff x is an element of X.

The kernel KABST for ABST role parts of two concepts C1 and C2 in the EL++

canonical form is defined using convolution kernel in the following way.

KABST (C1, C2) =
∑

x∈R−1
ABST

(C1)

∑
y∈R−1

ABST
(C2)

Kr(x, y) (3)

where Kr is a kernel defined on tuples Tu1, Tu2 of the form (Ri, C
′), where Ri

is a role in ABST parts and C ′ is a filler of the role Ri. The Kr kernel can be
defined as a convolution kernel in the following way, which exploits additional
semantical information coming from the KB, namely role hierarchies.

Kr(Tu1, Tu2) = Kco−rooted(R1, R2)K⊕,R(C′1, C
′
2) (4)

Kco−rooted(R1, R2) is the all co-rooted tree kernel [1] for two role hierarchies
of roles R1 and R2 that are part of ABST and both are rooted in top object
property. Since the fillers C ′1 and C ′2 of the roles R1, R2 respectively can be any
valid concepts in the canonical form the kernel defined in Formula (1) is called
recursively.
Let us now define the kernel for the CONC role part of the concept C. Analo-
gously, the CONC role part of concept C is a composite structure that can be
represented by a set of tuples of the form (Pi, f), where Pi is a role in CONC
parts and f is a concrete value argument of the role Pi. For such structure the
decomposition relation RCONC can be defined analogously to the RABST . Now
the kernel KCONC for CONC role parts of two concepts C1 and C2 can be
defined as follows.

KCONC(C1, C2) =
∑

x∈R−1
CONC

(C1)

∑
y∈R−1

CONC
(C2)

Kl(x, y) (5)

where Kl is a kernel defined on tuples Tu1, Tu2 of the form (Pi, f), where Pi is
a role in CONC parts and f is a concrete value argument of the role Pi. The
Kl kernel can be defined as a convolution kernel in the following way.

Kl(Tu1, Tu2) = Kco−rooted(P1, P2)Ktype(f1, f2)KT (f1, f2) (6)

where Kco−rooted(P1, P2) is the all co-rooted tree kernel for two role hierarchies
of roles P1 and P2 rooted in top data property, and KT is a type specific kernel
for values f1 and f2. Since the fillers f1, f2 of the roles P1, P2 respectively may
be of various types, by using the Ktype kernel we assure that values of the same
types are compared.

The second kernel makes use of the fact that EL++ concepts can be rep-
resented as directed labelled trees, similarly as described in [7, 8]. The EL++

concept description tree T = (V,E) is a directed labelled tree, where V is the
finite set of nodes, and E ⊆ V × NR|P × V is the set of edges. The root of the
tree is labelled with either >, ⊥ or all atomic/nominal concepts occurring in
primn(C). For each existential restriction ∃Rk.C

′ occurring at the top level of
C, it has an Rk-labelled edge to the root of a subtree corresponding to C ′. For
each ∃Pl.f restriction at the top level of C, it has an Pl-labelled edge to a leaf

corresponding to value f (the nodes corresponding to concrete values are not
expanded further). An empty label in a node is equivalent to >.

This kernel takes the structure of the directed labeled tree as well as the
semantics of its nodes and edges into account. It is mainly based on the random
walk graph kernel proposed in [9], where given two labelled graphs G1 and G2,
the number of matching labelled random walks is counted. The value of the
random walk kernel for two graphs G1 and G2 is calculated as the sum over the
kernel values of all pairs of walks within these two graph.

Unfortunately in that kernel attributes of two nodes v1 of graph G1 and w2 of
graph G2 are considered similar if they are completely identical which is rather
unusual for concept description trees of two EL++ concepts. For that reason we
decide to use similar approach to that presented for protein graphs kernel in [5]
and we analogously redefine the random walk kernel for the concept description
tree, where the kernel for each step in the random walk is the product of the
kernel of the original node, the destination node and the edge between them.

Definition 3 (Step kernel). For i ∈ {1, . . . , n − 1} the step kernel if defined as
kstep((vi, vi+1), (wi, wi+1)) = knode(vi, wi)knode(vi+1, wi+1) ·
kedge((vi, vi+1), (wi, wi+1)), where kedge is defined as follows
kedge((vi, vi+1), (wi, wi+1)) = ktype((vi, vi+1), (wi, wi+1)) ·
kedge labels abstract|concrete((vi, vi+1), (wi, wi+1))
and for i ∈ {1, . . . , n}, knode is defined as follows
knode(vi, wi) = ktype(vi, wi)knode labels concepts set|concrete(vi, wi).

In the Definition 3 of step kernel we used three basic types of kernels: type kernel
[5], node labels kernel and edge labels kernel. The purpose of the type kernel is
to assure that only nodes and edges of the same types are compared. In our case,
there are four basic types: ’concept set node’ (corresponding to nodes labelled
with a set of concepts from primn(C)), ’concrete value node’ (corresponding to
nodes labelled with a concrete value f), ’abstract edge’ (labelled with an abstract
role Rk), and ’concrete edge’ that is those labelled with a concrete role Pl.

Now we will define kernels to be used within the same type. In case of nodes
labelled with sets of primitive/nominal concepts, we will use the intersection
kernel [1]. Consider two sets C1, C2 of primitive or nominal concepts, then:

knode label concept set(C1, C2) = k∩(C1, C2) (7)

The node label kernel for two nodes of concrete value types can be evaluated
using any kernel suitable for both concrete value types. In order to assure that
only values of the same type are compared we use also the type kernel. knode labels

for two values nodes fi and fi for i ∈ {1, . . . , n} is defined as follows

knode label concrete value(fi, fi) = ktype(fi, fi)kT (fi, fi) (8)

where kT is a kernel defined for particular type of values of nodes.
There are basically two types of edge kernels, namely the kernel for an ab-

stract role and for a concrete role. For each Rk role as well as for each Pl role,
we can consider role hierarchy, rooted respectively in top object property and

top data property. Using this idea the edge label kernel for Rk role and for Pl

role are defined below respectively.

kedge labels abstract(Ri, Rj) = kco−rooted(Ri, Rj) (9)

kedge labels concrete(Pi, Pj) = kco−rooted(Pi, Pj) (10)

4 Conclusions and Future Work

In this paper, we have introduced two new kernel functions for computing sim-
ilarity between EL++ description logic concepts. It should be noted, however,
that our approach is suitable as well for comparing DL individuals. In particular,
individuals may be lifted to concept descriptions by an exploitations of a most
specific concept (msc) reasoning service or its approximation.

In the future, we will implement the proposed kernels within the framework
of an ontology-based data mining extension to Rapid Miner2, RMonto3, we
develop at the Poznan University of Technology. A supplementary version of
this work (submitted to the ECML/PKDD’2011 CoLISD workshop) may be
found at http://www.cs.put.poznan.pl/alawrynowicz/EL_kernels.pdf.

Acknowledgements. We acknowledge the support from the Polish Ministry of

Science and Higher Education (grant N N516 186437) and from European Community

7th framework program ICT-2007.4.4 (grant 231519 ”e-LICO: An e-Laboratory for

Interdisciplinary Collaborative Research in Data Mining and Data-Intensive Science”).

We also thank Adam Woznica for the references on labelled graph kernels.

References

1. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge
University Press, New York, NY, USA (2004)

2. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P., eds.:
The Description Logic Handbook. Cambridge University Press (2003)

3. Baader, F., Brand, S., Lutz, C.: Pushing the el envelope. In: In Proc. of IJCAI
2005, Morgan-Kaufmann Publishers (2005) 364–369

4. De Raedt, L.: Logical and Relational Learning. Springer Verlag (2008)
5. Borgwardt, K.M., Ong, C.S., Schönauer, S., Vishwanathan, S.V.N., Smola, A.J.,

Kriegel, H.P.: Protein function prediction via graph kernels. In: ISMB (Supplement
of Bioinformatics). (2005) 47–56

6. Haussler, D.: Convolution kernels on discrete structures. Technical report (1999)
7. Baader, F., Molitor, R., Tobies, S.: Tractable and decidable fragments of conceptual

graphs. In Tepfenhart, W.M., Cyre, W.R., eds.: ICCS. Volume 1640 of Lecture Notes
in Computer Science., Springer (1999) 480–493

8. Lehmann, J., Haase, C.: Ideal downward refinement in the el description logic. In:
Proceedings of the 19th international conference on Inductive logic programming.
ILP’09, Berlin, Heidelberg, Springer-Verlag (2010) 73–87

9. Gaertner, T., Flach, P., Wrobel, S.: S.: On graph kernels: Hardness results and
efficient alternatives. In: In: Conference on Learning Theory. (2003) 129–143

2 http://rapid-i.com/
3 http://semantic.cs.put.poznan.pl/RMonto/doku.php?id=start

