
Spatial Relation Extraction
using Relational Learning

Parisa Kordjamshidi1, Paolo Frasconi2, Martijn Van Otterlo1, Marie-Francine
Moens1, and Luc De Raedt1

1 Department of Computer Science, Katholieke Universiteit Leuven, Belgium
2 Universit di Firenze, Italy

Abstract. The automatic extraction of spatial information is a chal-
lenging and novel task with many applications. We motivate our defi-
nition of this task and formulate it as an information extraction step
prior to mapping to spatial semantics. Each sentence gives rise to sev-
eral spatial relations between words representing landmarks, trajectors
and spatial indicators. Learning to extract such spatial relations can be
formulated as a typical relational classification problem, for which we
employ the recently introduced kLog framework. We discuss modeling
and representation, and show experimental results.

1 Background

An essential function of language is to express spatial relationships between
objects and their relative location in the space. Understanding linguistic spatial
descriptions is a challenging problem in robotics, navigation, human-machine
interaction, query answering systems, etc [11]. The automated extraction of such
information from natural language is very useful in many domains, and here we
introduce a relational learning solution.

We identify two main abstract layers for extraction of spatial information [1,
8]: 1) a linguistic layer, which starts with unrestricted natural language and
predicts the existence of spatial information at the sentence level, and identifies
the words that play a particular spatial role; 2) a formal layer, in which the spa-
tial roles are mapped onto spatial formal models [4]. For example, in “Give me the
book on AI on the big table behind the wall.” a first step is to identify that a spatial
relation (on) holds between book and table. This could then be mapped to a spe-
cific, formal relation (in some formalism) AboveExternallyConnected(book, table).

Without considering formal relations here (for this, see [8]), we focus on the
first (linguistic) level which is however motivated as a necessary prior step for
mapping to formal spatial semantics. We call this task spatial role labeling
(SpRL): i) the identification of the words that play a role in describing spatial
concepts, and ii) the classification of the role that they carry in the context of a
spatial configuration. The spatial roles are:

Trajector. The entity whose location or position is described. It can be static
or dynamic; persons, objects, or events (also: local/figure object, locatum).
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Landmark. The reference entity in relation to which the location or the motion
of the trajector is specified. (also: reference object or relatum).

Spatial indicator. The element that defines constraints on spatial properties
like the location of the trajector with respect to the landmark. It determines
the type of spatial relation and is often expressed by a preposition, but can
also be a verb, noun, adjective, or adverb.

The words can take part in one or more spatial relations that are expressed by
the sentence. In the above mentioned sentence the location of book is described
referring to the table, therefore book is a trajector and table is a landmark.
Yet, table also has a relation with wall, but now with a different role. The
words on and behind are spatial indicators and express the linguistic type of
spatial relation. Now, { on(book,table), behind(table,wall) } is the set of spatial
relations expressed by the sentence, and that behind(book,wall) could be derived
(cf. [12, 9]). Note that on(book,AI) is not a spatial relation since this sense of
on is not spatial. SpRL has not been studied systematically before. Often a
restricted language is used to extract application-dependent relations and usually
one focuses on phrases of which it is known that spatial information is present [7,
6, 11, 10]. And, even though semantic roles and the structure of the sentence
given by (dependency) parsers contain useful information about spatial roles,
these alone are not enough to directly map to spatial roles and relations. In the
rest of this paper we describe a relational learning formulation of SpRL in the
novel kLog framework, which is based on graph kernels and allows describing the
learning problem in a declarative way. We discuss the imbalanced class problem
(wrt. too many negative examples) and show results in 2 different settings.

2 Relational Learning for SpRL

The input of SpRL is natural language sentence S, which is a sequence of N
words, S =

〈
w1, w2, . . . , wN

〉
. The words in the sentence have a number of local

properties and also relationships to each other. The output is a set of spatial
relations. We define a spatial relation as a triple sr(SI, TR, LM), where the
spatial indicator SI = wi, the trajector TR = wj , the landmark LM = wk,
i, j, k ∈ [1, N ] and i 6= j 6= k. We assume the roles are assigned to words. We
now describe the kLog domain representation and learning model.

2.1 Exploiting relational structure using kLog

kLog [3]3 is a language that allows users to specify a relational database, domain
knowledge and a target relational learning problem in a declarative way. The data
model is based on representing entities and relationships. kLog signatures present
the format of each table in the relational database. In this way the structure of
the data is naturally presented as an entity-relationship (E/R) diagram and

3 http://www.dsi.unifi.it/∼ paolo/ps/klog.pdf
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Fig. 1. Applied relational input features

features can be derived from that diagram. The learning setting then is learning
from interpretations and each interpretation is a set of ground atoms.
Input: local features. The main entity of our model is a word and to obtain
the properties of each word we perform a preprocessing step using the Char-
niak parser 4 [2] and the LTH5 tool, producing semantic roles and other features
in the CoNLL-2008 output format6. The local features include the word itself,
part-of-speech tag, the dependency relation of the word to its syntactic head in
the sentence, the semantic role and the subcategorization of the word. In kLog,
an identifier is assigned to each word and the words and their properties are
stored in a relational database. The word property tables are presented with
their signatures such as in:
signature word(w id::self, word::property)::extensional. e.g. word(w0, the). word(w1,kids).

signature pos(w id::word, posTag::property)::extensional. e.g. pos(w0, dt). pos(w1,nns).

. . .

Signature is a reserved term used for defining each table, w id is the identifier
of each word, and extensional means the content of these tables are provided to
kLog, while intentional would mean that the tables should be computed accord-
ing to a given background knowledge.
Input: relational features. Feature analysis indicates that some pairwise re-
lational features positively influence the learning model. These include the path
in the parse tree between words, the binary linear position of the words wrt.
each other, e.g. before or not, and the distance, i.e. the ratio of nodes on the
path between two words wrt. the number of all the nodes in the parse tree.

4 http://www.cog.brown.edu/∼mj/Software.htm
5 http://barbar.cs.lth.se:8081/
6 http://barcelona.research.yahoo.net/dokuwiki/doku.php?id=conll2008:format
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Output: spatial relations. Each sentence is associated with a set of positive
relations in the form of sr(SI, TR, LM). The only issue is that trajectors and
landmarks could be implicit and deleted by semantic ellipsis. For example, in
“There are red umbrellas on the right.”, on (on the right) is spatial indicator
umbrellas (red umbrellas) is trajector, and the landmark is undefined). Here we
assume each spatial relation requires an explicit spatial indicator but the tra-
jectors and landmarks can be undefined. To deal with implicit roles, we add
a dummy word undefined0 for these cases. kLog’s approach is to produce the
candidate triples according to the background knowledge and learn to classify
them using the relational(contextual) features of their components and predicts
a target table of spatial relations:
signature mytarget(w1::sp ind can, w2::trajector can, w3::landmark can)::intensional.
This implies that we assign the roles of trajector, landmark and spatial indicator
jointly and a sentence can naturally produce multiple spatial relations.
Background knowledge and candidate words. We employ background
knowledge to guide the construction of possible candidate spatial relation triplets.
Every preposition is assumed a candidate for being a spatial indicator, and nouns
are considered as candidate trajectors and landmarks. The advantage of a declar-
ative language such as kLog is that candidate words and their relations are easily
produced by providing logical descriptions through the intentional tables. For
example a trajector candidate is defined as:
signature trajector can(tr id::self)::intensional.

trajector can(TID) :-word(W, ),(pos(W,’nn’) ; pos(W,’nns’);word(W,’undefined0’)),

atomic concat(t,W,TID). Thus, a candidate trajector is either a noun or un-
defined0. To avoid too many features and too large related graphs, relational
features are produced only for candidate words. Again, relational features can
be directly programmed and extracted from the database.
Graphicalization. Graphicalization is the process of constructing a ground E/R
diagram associated with a given interpretation. Fig 1 shows a part of a graph
related to one sentence. There is one vertex for each tuple, labeled by the tuple
itself and edges connect the entities and the relationships that have a common
part in their identifiers. The graphs are turned into feature vectors using a graph
kernel, which leads to a propositional learning problem at the end.

2.2 Dealing with negative examples

One of the main challenges of relational learning is the huge number of negative
candidate relations compared to positives.To avoid building a biased model one
way is to build a model based on a balanced data (i.e. ignoring the prior). Al-
though the number of negatives can be reduced using background knowledge yet
in many tasks getting a balanced data set is not possible.It will be very effective
if the model is trained on the most confusing negatives, this will guarantee the
robustness of the model in the future. However, we do not handle finding best
negatives yet, but we choose them randomly from the possible candidates. We
suggest a two phase evaluation to obtain a realistic evaluation of the trained
model then. This will be discussed in the next section.
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3 Experiments

Data set Our corpus 7consists of textual descriptions of 613 images taken from
the IAPR TC-12 Image data set [5], denoted CLEF. It induces 1213 English
sentences and 1716 corresponding spatial relations. We set a number of exper-
iments here and show partial results, moreover we point to the challenge of
negative examples for learning relations and the evaluation.
Experiment 1: Here we take a standard classification learning setting, pro-
ducing candidate triples for both test and training sets according to background
knowledge and we employ 10-fold cross-validation. The precision is 69.67%, recall
66.17% and F1-measure 67.87. We noticed two disadvantages that lead to learn-
ing a biased model and underestimating the performance that can be obtained
by learning from the available data. Firstly, even though we use background
knowledge the data is highly imbalanced. Second, a number of positives in the
training phase is ignored because they were not picked as candidates by the
background knowledge. Combined with a general lack of positives (wrt. nega-
tives) this hurts performance. Ideally we would like to use all positives; hence
our second experiment.
Experiment 2: Here we use all positives and select a number of negatives ac-
cording to the background knowledge. We train a model based on the (balanced)
data and evaluate with 10-fold cross validation. The precision is 98.46%, recall
93.41% and F1-measure 95.87%. Note that this is an overestimation, because
the model is tested unrealistically regarding to the negatives that it will receive
in reality when faced with new sentences. Hence to make sure that the trained
model on the balanced data is robust enough a second phase of evaluation is
performed by testing the model on all the negatives that have not been selected
for training the model. The precision/recall can be computed based on summing
up the contingency table of cross validation and the one resulted from a test on
negatives, which gives precision 88%, recall 93.41 % and F1-measure 90%. This
shows a highly accurate model and the numbers are reliable for the performance
of the system in the future.
Experiment 3. Another interesting experiment is to classify individual roles
first and then produce the relations using a heuristic to show how it compares
to joint learning of the relations. The F1-measure of classification of trajectors,
landmarks and spatial indicators using kLog is (0.83, 0.79, 0.91) respectively,
which outperforms previous results using a maximum entropy model. In those
experiments we also employed a linear chain CRF model and results of classifica-
tion of individual roles were not significantly different from kLog’s. This indicates
that the contextual and relational features in kLog give similar results as con-
sidering correlations between outputs in CRF sequence tagging if the influence
of the difference between underlying models is assumed as trivial. However in
the CRF context we employ a heuristic to produce relations from taggings, and
this resulted in a less accurate extraction. A similar pipelining strategy in kLog
itself performs equally poor. This is an expected outcome since there could be

7 The data sets will be made publicly available.
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multiple relations per sentence and words can have multiple labels with respect
to different indicators. Joint classification of the whole relation, which is easily
modeled in kLog, is more effective.

4 Conclusion

The results for learning to extract spatial roles from natural language sentences
are presented. We have employed the relational learning framework of kLog to
classify candidate triplets of words representing spatial relations. To deal with
the unbalanced data problem, learning from balanced data is performed and we
suggested a two phase evaluation of the model. The performance of learning
the roles jointly is higher compared to our previous problem formulation using
sequence tagging. In future work we will map the spatial relations to more formal
spatial semantics and spatial ontologies using kLog.
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