
Learning Petri Net Models of Biological Systems
using ILP

Ashwin Srinivasan1 and Michael Bain2

1 Department of Computer Science
South Asian University, New Delhi, India.

2 School of Computer Science and Engineering,
University of New South Wales, Sydney, Australia.

1 Introduction

Networks are ubiquitous in Biology. They are used to represent biological re-
lationships ranging across all levels of organisation: for example, relationships
between organisms, and between an organism and its environment; the flow of
energy and matter in an ecosystem; the pathway of carbon atoms through an
ecosystem from producers of organic compounds to consumers that release car-
bon by respiration; the nitrogen cycle that links the environment to proteins and
compounds that form the bodies of living things; the stimulus-response mecha-
nisms in constituting nervous pathways; the regulation and control of endocrine
glands; the events related to the division and replication of cells; and intra- and
inter-cellular interactions between chemicals.

Computationally, substantial research effort has been, and continues to be
invested in developing models of biological networks [5]. While much of this re-
search has been directed at representation and reasoning, the emerging field of
Systems Biology [4] has highlighted the need to extract automatically models of
networks from experimental data. The requirement is for models that not only
determine the underlying relationships amongst entities, but are also capable of
simulating the dynamics of the system. ILP, with the ability to extract complex
relations from data is a natural choice for identifying network structure, but less
has been done on models that are able to generate system dynamics. The most
expressive, and understandable dynamic models of biological systems identified
by ILP have employed qualitative differential equations, or QDEs [9]. The rep-
resentation of QDEs provides a direct and simple abstraction of quantitative
ODEs. However the representation does have limitations. First, simulation can
produce spurious behaviour, arising from the ambiguities inherent in the quali-
tative approach. Second, issues of concurrency, which are prevalent in biological
systems, are not well handled. Third, there appears to be no straightforward
mechanism of introducing any form of quantitative information. Fourth, there
is little room for accounting for stochastic aspects inherent in the system. Most
of these issues are largely absent in the long-established qualitative representa-
tion of Petri nets. Starting from a simple bipartite graph representation that
is ideally suited for metabolic networks, Petri nets have been extended in a
number of ways that are of interest for biological networks. This incorporates

2 Ashwin Srinivasan and Michael Bain

timing (timed Petri nets), concentrations (continuous Petri mets), stochasticity
(stochastic Petri nets), multiple levels of organisation (hierarchical Petri nets),
inhibition and activation relations (Petri nets with “test” and “repressor” arcs),
and so on. Mathematically, the power of Petri nets ranges from simple qualitative
producer-consumer models to that of quantitative ODEs. Computationally, the
range is from above regular languages to Turing machines. A flourishing area of
Petri net models for biological systems now exists [6], which has almost entirely
been concerned with hand-crafted models.

In this paper we show that a known combinatorial algorithm for identifying
(pure) Petri nets from data can be formulated as a search over a lattice of in-
cidence matrices of Petri nets; and that there is a correspondence between this
lattice and a lattice of definite clauses ordered by subsumption, thus allowing
us to use an ILP system to learn Petri nets. This has some advantages over
using a specialised Petri net learner for biological system identification. First,
advances made in ILP on efficient search should allow the exploration of a larger
space of models than the enumerative techniques employed in the Petri net liter-
ature. Second, we are able to use well-established network models as background
knowledge to learn structured Petri net models representing compartmentalised
models of biological systems. Third, the ILP setting enables us to go beyond
learning simple Petri nets, to include tests on activation states. This allows us to
learn not only metabolic networks but signalling networks also. We demonstrate
each of these advantages using some well-known biological networks.

2 Petri Nets: an Example

Figure 1(a) shows a simple Petri net, with two kinds of nodes. Conventionally, the
circular nodes are called places and the rectangular nodes are called transitions.
Edges can only between a place and a transition or vice-versa (but never from one
place to another, or from one transition to another), and each edge has a weight
(or label: by convention, if a label is absent, then the weight is taken to be 1). A
transition thus has a finite number of input places and a finite number of output
places. Places can contain 0 or more tokens (usually shown as small black circles,
as in Fig. 1(b)), and the dynamics of the system are described by the firing of
transitions and the movement of tokens from one place to another. A transition
is enabled if the number of tokens at each input place for the transition is at least
equal to the weight of the arc from the place to the transition (a transition with
no input places is always enabled). An enabled transition can fire, resulting in
consuming tokens from an input place and depositing tokens in an output place:
the numbers of tokens consumed and deposited being determined by the arc
weights. The state of the Petri net at any point in time is the number of tokens
at each place, and is called a marking . It is evident from Fig. 1 that this “token
game” is ideally suited for chemical reactions in which reactants are consumed
and products are produced.

Learning Petri Net Models of Biological Systems using ILP 3

(a) (b) (c)

Fig. 1. (a) A simple Petri net representing the reaction 2H2 + O2 → 2H2O; (b) An
“initial marking”, in which molecules of hydrogen and oxygen are shown by tokens
(small solid circles); (c) A “final marking”, which results in two molecules of water,
from the molecules of hydrogen and oxygen in (b).

3 Learning Petri Nets

A Petri net [2] is a directed bipartite graph, with two node (vertex) types,
called places and transitions. Directed arcs (edges) are either from a place to a
transition (consumption) or a transition to a place (production). Place nodes and
arcs may be labelled. If the sets of places or transitions are empty this denotes
a degenerate Petri net. A Petri net may be defined as a tuple 〈P, T,M〉, where
P is a set of places, T is a set of transitions and the P × T matrix M is the
incidence matrix of the graph. In this paper we will represent a matrix using
square brackets and write vectors in transposed form using round brackets, e.g.,
(1, 0,−1) = [1, 0,−1]

T
.

In systems biology the incidence matrix represents the stoichiometry of the
system, i.e., the relative quantities of all molecular species in each of the reactions
in the system [7]. An entry (i, j) in this matrix denotes the net transfer of tokens
between place i and transition j on a firing. For example, tokens might represent
concentration levels of a molecular species in a reaction.

3.1 Pure Petri Nets

A self-loop in a Petri net is a pair of directed arcs, (p, t) from a place p to a
transition t, and (t, p) in the reverse direction. A Petri net without self-loops is
called pure, otherwise it is impure. Without loss of generality, since any impure
Petri net can be converted to a pure Petri net [2], in this paper we consider only
pure Petri nets.
A Lattice of Petri Nets The P ×T incidence matrix M can be written using
block matrix notation as M =

[
P1, P2, . . . , P|T |

]
. Each vector Pj , 1 ≤ j ≤ |T |,

is of size |P |. If M is a stoichiometric matrix then Pj is a reaction vector for
transition tj , written R(tj). M can be viewed as an ordered set of vectors Pj ,
and, by assuming each reaction vector R(tj) is uniquely identified, M can be
represented as a set of reaction vectors.

In a pure Petri net, only one arc can connect a place p and transition t, either
(p, t) or (t, p), but not both. The corresponding entry in the reaction vector R(t)
will be a negative integer if the arc is (p, t), i.e., consumption or removal of tokens
from p, or a positive integer if it is (t, p), i.e., production or addition of tokens
to p. If there is no such arc the entry is zero.

4 Ashwin Srinivasan and Michael Bain

A standard approach for any implementable Petri net is to ensure that it is
k-bounded [2]. A place p is k-bounded for an initial marking m0 if in any marking
reachable from m0 the number of tokens does not exceed a non-negative integer
bound k. A Petri net is k-bounded for an initial marking if all places are k-
bounded.

Assuming that all markings are derivable from a pure k-bounded Petri net
using a linear combination of reaction vectors ensures that no reaction vector
component has an absolute value that exceeds k, since otherwise in some marking
a place could have more than k tokens. Therefore the set of all possible |P |-sized
reaction vectors of a pure k-bounded Petri net is finite with size S = (2k+ 1)|P |.

Since the degenerate Petri net with no transitions can be represented by the
empty set, the set of all pure k-bounded Petri nets is the power-set of the set
of all possible reaction vectors, with size 2S . Representing the incidence matrix
of a Petri net by the set of reaction vectors corresponding to its transitions we
obtain the following generality ordering between Petri nets: M1 subsumes M2,
denoted M1 �M2, if M1 ⊆M2.

This power-set of reaction vectors and subsumption ordering forms a lattice
of Petri nets, where the ordering is based on set inclusion, but where the lattice
is the inverse of the usual subset lattice [1]. Here the bottom element is the
set of all reaction vectors, and top is the empty set (the degenerate Petri net).
In this lattice every pair of sets has a supremum (least upper bound) defined
by their set intersection, and infimum (greatest lower bound) defined by their
union. Since the lattice is finite, it is complete [1]. This lattice corresponds to
the natural conception of specialising a Petri net by adding transitions.
Petri Net Reconstruction In the systems biology methodology [4] pertur-
bation of system components results in observed state changes which need to be
incorporated into a model of the system. For a given set of places P in a Petri net
the states are markings and changes are represented as |P |-sized difference vec-
tors obtained by subtracting a state from its successor, i.e., Dj+1 = mj+1−mj ,
where the m are markings. For biological applications a difference vector D can
be expressed as a linear combination of |P |-sized reaction vectors that denote
transitions specifying the movement of tokens between places in the system.

The difficulty is that difference vectors under-determine the network to be
modelled, since more than one set of reaction vectors can be consistent with a
single set of difference vectors. In [3] the Petri Net Reconstruction problem is
formulated as a combinatorial algorithm to find the minimal Petri net, or set of
reaction vectors, that fit a time series data set expressed as difference vectors.
An ILP Approach The algorithm of [3] is essentially a search through the
set of subsets of possible reaction vectors. Given the lattice structure established
above it is easy to see that an ILP search could be used instead, based on the
following representation of a Petri net as a definite clause.

Definition 1. r-literal. An r-literal is a literal with three arguments: the first,
N , is an identifier for a Petri net; the second, T , is an identifier for a transition
node in the Petri net; and the third, R, is a list integers denoting the reaction
vector for T in the incidence matrix of N .

Learning Petri Net Models of Biological Systems using ILP 5

As is usual practice, it is convenient to regard a clause as a set of literals.

Definition 2. Petri net definite clause. A Petri net definite clause is a set
of literals. The head literal has a single argument, N , an identifier for a Petri
net. The clause body is a (possibly empty) set of r-literals.

Clearly there is a clause lattice corresponding to the Petri net lattice that enables
the use of an ILP refinement operator to search it. We have developed and
implemented such an approach using the ILP system Aleph [8] and report first
results below. The details are left for the full version of the paper.

3.2 General Petri Nets

In [3] only simple transitions can be included, restricted to threshold logic condi-
tions for a standard firing rule. However, by representing a Petri net as a clause
in a logic program we enable the introduction of transitions in the form of ar-
bitrary subnets encoded in background knowledge, as required for examples (b)
and (c) in Figure 2. Furthermore we extend the representation of r-literals to
enable checking of generalized pre- and post-conditions on transitions defined
with respect to arbitrary background knowledge, thus enabling the integration
of generic biological circuits, as in example (c) in Figure 2. The description of
this extended clause lattice and refinement operator can only be reported here
by way of the examples in Section 4 due to lack of space.

4 Applications

For reasons of space, we only show results of the kinds of networks we have
been able to identify from simulated data, using the ILP system Aleph [8]. In
Fig. 2, we have selected three networks that illustrate three separate aspects of
learning Petri nets using an ILP system. The first, Glycolysis, shows that reason-
ably large networks can be identified using the ILP version of the combinatorial
search in [3] (the examples shown in that paper are substantially smaller by
comparison). In the second, we use one stage of the Glycolysis network as back-
ground knowledge to the ILP system to allow a more complex transition. In the
third, a generic biochemical structure is used as background knowledge. New
transitions are obtained when the ILP system instantiates this generic structure
to specific enzyme-enabled reactions. These new transitions are used to identify
the final network structure. Both the second and third networks illustrate ways
of constructing networks that go beyond the basic algorithm in [3]. In the final
version of the paper we will describe in detail how these networks are identified.

5 Conclusions

We have developed and implemented a novel approach to learning dynamic mod-
els of biological systems by combining Petri nets with ILP. Petri nets provide an

6 Ashwin Srinivasan and Michael Bain

(a) (b) (c)

Fig. 2. Example networks identified by Aleph. (a) Glycolysis and its pure Petri net
representation; (b) Fructose metabolism; and (c) the Kinase cascade in the MAPK
pathway. The shaded portions in (a) correspond to the Petri net representation of
the phosphorylation stage of Glycolysis, which as a “macro-transition” for (b). In (c),
a generic enzymatic reaction structure is used repeatedly to establish a cascade of
phosphorylation reactions (the corresponding Petri net structure of the reaction is
shown on the extreme right).

effective framework for modelling and simulation, and ILP a powerful means of
representing and learning with background knowledge. As far as we are aware
the application of this approach has resulted in learning the largest dynamic
network models of biological systems to date. Also, we believe this is the first
time ILP has been used to combine a comprehensible logical representation with
learning of matrix models based on linear algebra.

Acknowledgements. A.S. acknowledges the support of the School of Computer Sci-

ence and Engineering and the Centre for Health Informatics at UNSW, and M.B.

acknowledges the support of the Faculty of Engineering at UNSW.

References

1. B.A. Davey and H.A. Priestley. An Introduction to Lattices and Order (Second
Edition). Cambridge University Press, 2002.

2. R. David and H. Alla. Discrete, Continuous, and Hybrid Petri Nets. Springer,
Berlin, Second edition, 2010.

3. M. Durzinsky, A. Wagler, and R. Weismantel. An algorithmic framework for network
reconstruction. Theoretical Computer Science, 412:2800–2815, 2011.

4. T. Ideker, T. Galitski, and L. Hood. A new approach to decoding life: systems
biology. Ann. Review of Genomics and Human Genetics, 2:343–372, 2001.

5. B. H. Junker and F. Schreiber. Analysis of Biological Networks. Wiley, NJ, 2008.
6. I. Koch, W. Reisig, and F. Schreiber, editors. Modeling in Systems Biology: the

Petri Net Approach. Springer, Berlin, 2011.
7. B. Palsson. Systems Biology: Properties of Reconstructed Networks. Cambridge

University Press, Cambridge, 2006.
8. A. Srinivasan. The Aleph manual. University of Oxford, Oxford, 2007.
9. A. Srinivasan and R. D. King. Incremental Identification of Qualitative Models

of Biological Systems using Inductive Logic Programming. Journal of Machine
Learning Research, 9:1475–1533, 2008.

