Towards Efficient Higher-order Logic Learning in
a First-order Datalog Framework

Niels Pahlavi and Stephen Muggleton

Department of Computing, Imperial College London,
180 Queen’s Gate, London SW7 2BZ, UK
niels.pahlavi@imperial.ac.uk, s.muggleton@imperial.ac.uk

Abstract. Within ILP, the concepts to be learned are normally con-
sidered as being succinctly representable in first-order logic. In a previ-
ous paper the authors demonstrated that increased predictive accuracy
can be achieved by employing higher-order logic (HOL) in the back-
ground knowledge. In this paper, the flexible higher-order Horn clauses
(FHOHC) framework is introduced. It is more expressive than the for-
malism used previously and can be emulated (with the use of “holds”
statements and flattening) in a fragment of Datalog. The decidability,
compatibility with ILP systems like Progol and positive learnability re-
sults of Datalog are then used towards efficient higher-order logic learning
(HOLL). We show with experiments that this approach outperforms the
HOLL system AProgol and that it can learn concepts in other HOLL
settings like learning HOL and using HOL for abduction.

1 Introduction

Within inductive logic programming (ILP), it is usual to assume that all concepts
to be learned can be succinctly represented in first-order logic (FOL). However,
in [11] the authors demonstrated that in certain learning problems increased
predictive accuracy can be achieved by employing higher-order logic (HOL) in
background knowledge, thus advocating higher-order logic learning (HOLL). In
this paper we explore whether some of the learning advantages provided by a
HOL framework can be achieved within FOL. In particular, we introduce and
explore a HOL formalism called flexible higher-order Horn clauses (FHOHC). We
also show that statements in FHOHC can be emulated in a fragment of Datalog
FOL using "holds" statements (as suggested in [7]) and flattening (as defined in
[12]). This fragment of FOL, called flattened holds Datalog programs (FHDP),
has the advantage of being decidable and of having positive ILP learnability
results. Figure 1 presents two examples of such HOL clauses (lines 1 and 3).

Using the power of expressivity of HOL in logic-based Machine Learning
(thus realizing HOLL) to outperform first-order logic learning (FOLL) has been
advocated in an ILP context, as in [11] and [4] but also with a different logic in
[6]. Figure 2 summarizes three settings of interest for HOLL in ILP.

In [11], the HOLL system AProgol was introduced. It is based on the ILP
system Progol [8], and its underlying logic is HOL as it is based on Miller and

Fig. 1. Flexible higher-order Horn clauses programs representing transitivity for binary
relations and mathematical induction for Peano numbers (lines 1 and 3, respectively)
and their corresponding flattened holds Datalog programs (lines 2 and 4, respectively)
R(X,Y) « transitive(R), R(X, Z),R(Z,Y). (1)

holds(R, X,Y) < holds(transitive, R), holds(R, X, Z), holds(R, Z,Y). (2)
P(sko_cst). P(X) < P(0), P(succ(sko__cst). (3)

holds(P, sko__cst). holds(P, X) « holds(P,0), holds(succ, sko__cst,Y), holds(P,Y"). (4)

Fig. 2. HOLL settings in ILP

Setting[Background Knowledge] Hypothesis [Examples | Learning |
1 HOL, Given FOL, To be learned FOL, Given Induction
2 FOL, Given HOL, To be learned FOL, Given Induction
3 HOL, Given FOL/HOL, Given |[FOL/HOL, To be learned|Abduction

Nadathur’s Higher-order Horn Clauses (HOHC), defined in [9]. The paper ex-
perimentally compared AProgol with Progol in Setting 1 (see Figures 2 and 3). It
was demonstrated that AProgol can achieve considerably higher accuracy in this
setting than Progol, however several issues still need to be addressed. The HOL
formalism HOHC was chosen for its supposed expressivity and soundness. Yet,
several limitations are intrinsic to it. Clauses with flexible heads (atoms whose
predicate is a variable [9]) are not allowed for decidability reasons, which limits
the expressivity and may be a problem in Settings 2 and 3. There is an issue
with complexity. The system has not yet been adapted to handle abduction as
in Progol5 [8] and the Progol theoretical results remain to be proved for HOHC.
We will see how the use of FHOHC and FHDP may overcome these issues.

In Section 2, the frameworks FHOHC and FHDP are described. Section 3
presents results in three different HOLL settings and develops the experiment
detailed in [11]. Finally, Section 4 concludes and suggests further work.

2 HOLL with first-order Datalog and Progol

In Definition 1, we introduce the HOL formalism called flexible higher-order
Horn clauses (FHOHC), which is based on first-order Horn clauses and allows
for predicate (at least second-order) variables.

Definition 1. (Flexible Higher-order Horn Clauses (FHOHC)).

A represents atomic formulas (or atoms), G goal formulas and D programme
formulas (or definite formulas, or clauses). Horn clauses are defined by the fol-
lowing grammar. G ::= A|G NG and D == A|G D AVzD. An atomic formula
is P(t1,...,tr) where P is a either a predicate symbol or higher-order variable of
arity k and t1, ..., t, are terms. A term is either a variable or f(t1,...,t;) where f
is a functor of arity j and ty,...,t; are terms. A functor of arity 0 is a constant.

Compared with HOHC [9], FHOHC allows for flexible heads and therefore for
more expressivity. These were prevented in HOHC because of decidability issues

but we will now show how FHOHC can be emulated with a fragment of first-
order Datalog. Datalog [1] is a restriction of Logic Programming that allows only
variables and constants as terms (and hence avoids the use of function symbols).
It has the advantage of being decidable. It has a declarative semantics and one
can benefit from some positive ILP learnability results within it, as summarized
in [5] and [2]. The use of “holds” statements as suggested in [7] allows us to turn
a higher-order atom into a first-order one. Moreover the flattening /unflattening
procedures [12] can translate generic Horn clauses into Datalog ones and vice-
versa, without loss of generality. This is why we introduce the flattened holds
Datalog programs (FHDP) in Definition 2 to emulate HOL and FHOHC.

Definition 2. (Flattened Holds Datalog Programs (FHDP)).

A flattened holds Datalog program is a flexible higher-order Horn clause pro-
gram which has been transformed as follows. First, every atom P(ty,...,11),
P being a predicate symbol or a higher-order variable, is replaced by the atom
holds(P,ty, ..., t) of arity k + 1. Then the flattening algorithm, defined in [12],
is applied to the modified program.

In Figure 1, two examples of such FHDP programs are presented (lines 2
and 4). With such an underlying framework, we can obviously use any of the
first-order ILP systems available. Progol [8] is a popular implementation, which
allows us to learn in the HOLL Settings 1 and 2 requiring inductive reasoning
but also in Setting 3 requiring abductive reasoning with Progol5 (see Figure 2).
Developing HOLL with the Datalog fragment FHDP and Progol enables us to
directly use an ILP system like Progol and its results (including Progol5), to
benefit from the efficiency of deduction of Datalog and its decidability, and to
have more expressivity than HOHC with flexible heads to handle more learning
settings. In terms of learnability and predictability, the existing positive results
for Datalog can be used but the higher-order nature of the programs may also
provide more complex and better choices of features, as analysed in [2].

3 Experiments

In this section, we show how our Datalog approach can be applied on three
examples covering the three HOLL settings defined in Section 1. All the corre-
sponding files and experiments can be found at [10]. In Examples 1,2 and 3, (...)
corresponds to omitted parts.

HOLL Setting1: Inductive learning of FOL hypothesis with HOL background .
This follows the experiment fully described in [11], about the learning of the
predicate ancestor given the predicate parent. Progol rarely finds the definition
(either returning incorrect recursive definitions, non-recursive definitions or not
being able to induce clauses that compress the data). On the other hand, AProgol
learns the correct definition in all the cases, which is non recursive and can be
learned from any given positive example. This is due to the presence of the
higher-order predicate trans_closure, which represents the transitive closure of

any binary relation. Here we use our FHDP approach in the comparison. The
AProgol files (see Example 1) are totally emulated (with the exception of the
addition of a prune statement to prevent higher-order tautologies in Progol).
Hence the same learned hypothesis and the same predicative accuracy results
(see Figure 3). In Figure 3, the running times are also added, which show that the
FHDP approach is considerably faster compared to standard Progol and AProgol
(both being similar), which illustrates the efficiency of the Datalog framework.

This type of learning can be used with multiple higher-order predicates and with
non-IID problems.

Ezxample 1. Settingl: Input file for learning ancestor.
:- modeh (¥ holds(ancestor,+person,+person))?
:- modeb (¥, holds(#predso,#predpp,+person,+person))?
predso(trans_clos). predpp(parent). predpp(married).
person(X) :- male(X). person(X) :- female(X).
holds(trans_clos,R,X,Y) :- holds(R,X,Y).
holds(trans_clos,R,X,Z) :- holds(R,X,Y), holds(trans_clos,R,Y,Z).
prune(holds(P,A,B),Body) :- in(holds(trans_clos,P,A B),Body).
holds(married,michael I,eudoxia_stresh). (...) holds(parent,michael I alexis I).(...)
:-holds(ancestor,maria_1,nat narysh). (...) holds(ancestor,alex IImaria_6). (...)
Learned clause: holds(ancestor,X,Y) :- holds(trans_ clos,parent, X,Y).

Fig. 3. Left: Comparison between Progol, Progol with FHDP and AProgol on the An-
cestor example (upper graph: predictive accuracy; lower graph: running times). Right:
Part (around one third) of the Romanov dynasty tree used in the experiment

100.00% B B B B B B

90.00% sudoxia 1628 Michael I 1624

reshneva Tsar of Russia ———— Maria Dolgorukova
80.00% 508-1645 1S96-1613-1645 d.1625
70.00%
= 1648 Alexis I 1671 Matalia
3260.00% Tsar of Russia Maryshkina
S 1629-1645-1676 1651-1694
£50.00%
3 & Progol I I
<40.00% V- Datalog Progol Feodosia Simeaon
2 4 1662-1713 1665-1669 Fyodaora Natalya
'530.00% =0 | ambda Progol 1674-1677 1673-1716
B Fyodor IIL
£ nna L vevdokia
a20.00% 4 Tsar of Russia
355-1659 4gg7.1675-1682 OO
10.00% Eudexia 1689-1608 Peter Ithe Great 1712 Catherine I
Number of examples in Input _ophukina Tsar of Russia Empress of Russia
0.00% 669-1731 1672-1682-1725 1684-1725-1727
6 10 16 20 2 30,
100
«° el | li 1, | t. ! P ! 1 Matalia
gari ve
80 & Progol 1693 MNatalia argarita

eter a
1713-1715 1714-1715 1715-1719 1717 1718-1725

~70 V- Datalog Progol

Anna 1724 Charles Frederick Elizaheth
£60 —*Lambda Progol 2 Ppetrovna Duke of Holstein-Gottorp EMPress of Russia
850 1708-1728 1700-1739 1709-1741-1762
3
240
Es0 Peter 111 1745 Catherine II the Great
L Emperor of Russia Empress of Russia
220 1728-1762-1762 1729-1762-1796
g1
¢k — O i v Maria . Paul T 1773 Matalia

6 10 6 20 2% s Fecdorovna Emperor of Russia Alexeievna
Number of examples in Inpit 1758-1828 1754-1796-1801 1755-1776
Louise 1793 Alexanaer 1 . ' .
of Baden Emperor of Russia . Sl Elena 1799 Fr -ildw -cbh of williarm 1t 2818 anria
1779-1826 1777-1801-1825 T3Sz 179s 1784-1803 M;cchigr:llng- of the Netherlands 1795-1865
- 2738 1809 ina 1816
nEiTE Elizabeth Archduke Joseph Alexandra Duke George Elcaterina william, King of
1759-1800 1806.1808 of Austria 1783-1801 of Oldenburg 1788-18139 Wurttemberg
Juliane of Saxe- 1796-1799 KOPStantin 1820 .., Nicholas I 1s17 Alexandra
Coburg-Saalfeld — (Lhdicated) Grudzinska Emperor of Russia Feodorovna
1796-1825-1855 1798-1880
Maria 1804 -Earl Eredaricl Charlotte of ~22% michael
e T xe-weimar-Eisenach Wit mibat LzaELaas Elizabeth
1826-1829

HOLL Setting2: Inductive learning of HOL hypothesis with FOL background
knowledge. In Example 2, a higher-order clause representing the transitivity
of any binary relation (as in Figure 1) is learned from examples of two binary
relations (one being transitive, the other not). The running time is under a sec-
ond. This learning could not be done with AProgol, as it involves a clause with
a flexible head. This type of learning can be used for transfer learning.

Ezample 2. Setting2: Input file for learning transitivity.
:- modeh(*,holds(+predicate,+argument,+argument))?
:- modeb (¥, holds(#predicate,+predicate))?
:- modeb (¥, holds(+predicate,+argument,+argument))?
predicate(trans). predicate(cause). predicate(pred). argument(a). (...)
holds(trans,cause). :- holds(trans,pred).
holds(cause,a,b). (...) holds(pred,c,d). (...)
:- holds(cause,b,a). (...) - holds(pred,a,c). (...)
Learned clause: holds(R,X,Y) :- holds(trans,R),holds(R,X,Z),holds(R,Z,Y).

HOLL Setting3: Abductive learning of FOL hypothesis with HOL background
knowledge. In Example 3, we follow the approach in [3], to formulate and adapt
the general (second-order) concept of mathematical induction for Peano numbers
(f(0O) A (f(x) = f(Sz)) — f(y)) in the FHOHC and FHDP frameworks (as in
Figure 1). It is included with the less than predicate and is used to abduce
the “base case” of a particular (first-order) predicate f. We also have to include
the Clark completion of the “step case” of the definition of f for mathematical
induction to be utilized. The running time is under five seconds. This learning
can be adapted to structural induction, to predicate invention and to abduce
higher-order hypothesis.

Ezample 3. Setting3: Input file for abduction with mathematical induction.
:-modeh(* holds(lt,#peano_int,+peano_int))?
:-modeb(*,holds(s,+peano_int,+peano_int))? :-observable(holds/2)?
peano_int(0). peano_int(s(X)) :- peano_ int(X). holds(s,W,s(W)).
holds(F,sko_x). holds(F,X) :- holds(F,0),holds(s,sko_ x,Y),holds(F,Y).
holds(1t,U,V) :- holds(s,X,U),holds(s,Y,V),holds(1t,X,Y).
holds(f,X) :- holds(s,X,Y),holds(1t,X,Y). holds(lt,X,Y) :- holds(s,X,Y),holds(f,X).
holds(f,s(s(s(s(0)))))- (-..) :- holds(1t,s(0),0). (...)

Learned clause: holds(1t,0,Y) :- holds(s,X,Y).

4 Conclusion and Further Work

In this paper, the HOL framework FHOHC is introduced, which is more ex-
pressive than HOHC and can be emulated (with the use of “holds” statements
and flattening) in the FHDP fragment of Datalog, which is decidable, efficient,
can be directly used by ILP systems like Progol and has positive learnability re-
sults. We have showed on concrete experiments that this approach learns as well
as AProgol (based on HOHC) on HOLL Settingl (learning of FOL with HOL
background) but with better running times. Moreover, it can learn examples in
HOLL Settings 2 (learning of HOL with FOL background) and 3 (abduction

of FOL with HOL background), in which AProgol can not be used or has not
yet been implemented to learn. We are currently finishing more experiments in
order to have more insight on the performances of this new approach (includ-
ing one about the learning of the move of a bishop in chess involving multiple
HOLL settings). We are also completing the formalization of the equivalence
between FHOHC and FHDP. These could be both included in a longer version
of the paper. We think that this approach could be used further, including in
more complex situations, to abduce HOL, for predicate invention and for transfer
learning.

References

1.

12.

S. Ceri, G. Gottlob, and L. Tanca. What You Always Wanted to Know About
Datalog (And Never Dared to Ask). IEEE Transactions on Knowledge and Data
Engineering, 1:146-166, 1989.

W. Cohen and C.D. Page. Polynomial learnability and Inductive Logic Program-
ming: methods and results. New Generation Computing, 13:369-409, 1995.

J.L. Darlington. Automatic Theorem Proving with Equality Substitutions and
Mathematical Induction. In Machine Intelligence 3, pages 113-127. 1968.

C. Feng and S.H. Muggleton. Towards inductive generalisation in higher order
logic. In Proc. Ninth Int. Work. on Machine Learning, pages 154-162, 1992.
Jorg-Uwe Kietz and Saso Dzeroski. Inductive Logic Programming and Learnability.
SIGART Bulletin, 5(1):22-32, 1994.

J.W. Lloyd. Logic for Learning. Springer, Berlin, 2003.

John McCarthy and Patrick J. Hayes. Some Philosophical Problems from the
Standpoint of Artificial Intelligence. In Machine Intelligence 4. 1969.

S. Muggleton and C. Bryant. Theory completion using inverse entailment. 10th
Intern. Workshop on Inductive Logic Programming (ILP-00), pages 130-146, 2000.

. G. Nadathur and D. Miller. Higher-order Horn Clauses. Journal of the ACM, 1990.
10.
11.

N. Pahlavi. ILP11 Experiments. http://www.doc.ic.ac.uk/ namdp05/ilp11.

N. Pahlavi and S.H. Muggleton. Can HOLL Outperform FOLL? In Proceedings of
the 20th Intern. Conf. on Inductive Logic Programming. Springer-Verlag, 2010.
Céline Rouveirol. Flattening and Saturation: Two Representation Changes for
Generalization. Machine Learning, 14(1):219-232, 1994.

