The PITA System for Logical-Probabilistic
Inference

Fabrizio Riguzzi' and Terrance Swift?

! ENDIF - University of Ferrara, Via Saragat 1, [-44122, Ferrara, Italy
fabrizio.riguzzi@unife.it
2 CENTRIA - Universidade Nova de Lisboa
tswift@cs.suysb.edu

1 Introduction

Probabilistic Inductive Logic Programming (PILP) is gaining interest due to its
ability to model domains with complex and uncertain relations among entities.
Since PILP systems generally must solve a large number of inference problems in
order to perform learning, they rely critically on the support of efficient inference
systems.

PITA [6] is a system for reasoning under uncertainty on logic programs.
While PITA includes frameworks for reasoning with possibilistic logic program-
ming, and for reasoning on probabilistic logic programs with special exclusion
and independence assumptions, we focus here on PITA’s framework for reasoning
on general probabilistic logic programs following the distribution semantics: one
of the most prominent approaches to combining logic programming and proba-
bility. Syntactically, PITA targets Logic Programs with Annotated Disjunctions
(LPADs) [8] but can be used for other languages that follow the distribution
semantics, such as ProbLog [2], PRISM [7] and ICL [5], as there are linear trans-
formation from one language to the others [I].

PITA is distributed as a package of XSB Prolog and uses tabling along with
an XSB feature called answer subsumption that allows the combination of dif-
ferent explanations for the same atom in a fast and simple way. PITA works by
transforming an LPAD into a normal program and then querying the program.

In this paper we provide an overview of PITA and an experimental com-
parison of it with ProbLog, a state of the art system for probabilistic logic
programming. The experiments show that PITA has very good performances.

2 Probabilistic Logic Programming

The distribution semantics [7] is one of the more widely used semantics for prob-
abilistic logic programming. In the distribution semantics a probabilistic logic
program defines a probability distribution over a set of normal logic programs
(called worlds). The distribution is extended to a joint distribution over worlds
and queries; the probability of a query is obtained from this distribution by
marginalization.

The languages based on the distribution semantics differ in the way they
define the distribution over logic programs. Each language allows probabilistic
choices among atoms in clauses:. As stated above, PITA uses LPADs because of
their general syntax. LPADs are sets of disjunctive clauses in which each atom
in the head is annotated with a probability.

Ezxample 1. The following LPAD T} captures a Markov model with three states
of which state 3 is an end state

$(0,1):1/3 V $(0,2):1/3 V 5(0,3):1/3.
s(T,1):1/8\ s(T,2):1/3V s(T,3):1/3 +
T1is T-1, T1>=0, s(T1,F), \+ s(T1,83).

The predicate s(T,S) models the fact that the system is in state S at time T.
As state 3 is the end state, if s(T', 3) is selected at time T', no state follows.

We now present the distribution semantics for the case in which a program
does not contain function symbols so that its Herbrand base is finitdd.

An atomic choice is a selection of the i-th atom for a grounding C6 of a
probabilistic clause C' and is represented by the triple (C,6,7). A set of atomic
choices « is consistent if (C,0,i) € k, (C,0,j) € k = i = j, i.e., only one head is
selected for a ground clause.

A composite choice k is a consistent set of atomic choices. The probability of
composite choice is P(k) =[] ¢ 9.)e, F0(C, 7) where Fy(C, 1) is the probability
annotation of head i of clause C. A selection o is a total composite choice (one
atomic choice for every grounding of each probabilistic statement/clause). A
selection o identifies a logic program w, called a world. The probability of w, is
P(wy) = P(0) = [](c,,i)er F0(C.). Since the program does not have function
symbols the set of worlds is finite: Wy = {wy, ..., w,, } and P(w) is a distribution
over worlds: 3y, P(w) =1

We can define the conditional probability of a query @ given a world: P(Q|w) =
1if @ is true in w and 0 otherwise. The probability of the query can then be ob-
tained by marginalizing over the query P(Q) = >, P(Q,w) =3 P(Qlw)P(w) =
Zw\:Q P(w)

3 The PITA System

PITA computes the probability of a query from a probabilistic program in the
form of an LPAD by first transforming the LPAD into a normal program con-
taining calls to manipulate Binary Decision Diagrams (BDDs). The idea is to
add an extra argument to each literal to store a BDD encoding the explanations
for the answers of the goal. The extra arguments of these literals are combined
using a set of general library functions:

3 However, the distribution semantics for programs with function symbols has been
defined as well [7l5].

— init, end: initialize and terminate the extra data structures necessary for
manipulating BDDs;

— zero(-D), one(-D), and(+D1,+D2,-D0O), or(+D1,+D2, -DO), not(+D1,-DO):
Boolean operations between BDDs;

— get_var_n(+R,+S,+Probs,-Var): returns the multi-valued random variable
associated to rule R with grounding substitution S and list of probabilities
Probs;

— equality(+ Var,+ Value,-D): D is the BDD representing Var=Value, i.e. that
the random variable Var is assigned Value in D;

— ret_prob(+D,-P): returns the probability of the BDD D.

The PITA transformation applies to clauses, literals and atoms. The transfor-
mation for a head atom H, PIT Ay (H), is H with the variable D added as the
last argument. Similarly, the transformation for a body atom A;, PITAg(A;),
is A; with the variable D; added as the last argument. The transformation
for a negative body literal L; = —A;, PITAg(L;), is the Prolog conditional
(PITA%(A;) — not(DNj;,D,);one(Dy)), where PITAL(A;) is A; with the
variable DN; added as the last argument. In other words, the input data struc-
ture, DN, is negated if it exists; otherwise the data structure for the constant
function 1 is returned.

The disjunctive clause C, = Hy : a1 V...V Hy, : oy, < L1,...,L,,. where
the parameters sum to 1, is transformed into the set of clauses PIT A(C,):

PITA(C,,i) = PITAy(H;) + one(DDy),

PITAB(Ll), cmd(DDo, Dl, DDl), ey

PITAg(L,,),and(DDy,—1, Dy, DD,y),

getwarn(r,VC, [as,...,a,], Var),

equality(Var,i, DD), and(DD,,, DD, D).
for i = 1,...,n, where VC is a list containing each variable appearing in C,..
PITA uses tabling and a feature called answer subsumption available in XSB
that, when a new answer for a tabled subgoal is found, it combines old answers
with the new one accoring to a partial order or (upper semi-)lattice. For example,
if the lattice is on the second argument of a binary predicate p, answer subsump-
tion may be specified by means of the declaration table p(-,or/3 - zero/1) where
zero/1 is the bottom element of the lattice and or/3 is the join operation of
the lattice. Thus if a table has an answer p(a,d;) and a new answer p(a,ds)
is derived, the answer p(a,d;) is replaced by p(a,ds), where ds is obtained by
calling or(dy, da,ds).

In PITA various predicates of the transformed program should be declared
as tabled. For a predicate p/n, the declaration is table p(-1,...,-n,or/3-zero/1),
which indicates that answer subsumption is used to form the disjunction of
BDDs. At a minimum, the predicate of the goal and all the predicates appearing
in negative literals should be tabled with answer subsumption. However, it is
usually better to table every predicate whose answers have multiple explanations
and are going to be reused often.

In Prolog systems that do not have answer subsumption, such as Yap, its
behavior can be simulated on acyclic programs by using the transformation

PITA(C,,i) = PITAy(H;) < bagof (DB, EV " (one(DDy),

PITAB(Ll), and(DDo, Dl, DDl), ey
PITAg(L,,),and(DDy,—1, Dy, DD,y,),
getwarn(r,VC, [as,...,a,], Var),
equality(Var,i, DD),and(DD,,, DD, DB)), L),
orlist(L, D).

where EV is the list of variables appearing only in the body except DB and

or_list/2 computes the or-join of all BDDs in the list passed as the first argument.

4 Experiments

PITA was tested on six datasets: a Markov model from [§], the biological net-
works from [2] and the four testbeds of [4]. PITA was compared with the exact
version of ProbLog [2] available in the git version of Yap as of 15 June 20110
This version of Problog can exploit tabling, but as mentioned above, it cannot
exploit answer subsumption which is not available in Yap.

The first problem is modeled by the program in Example [l For this exper-
iment, we query the probability of the model being in state 1 at time N for
increasing values of N. For both PITA and ProbLog, we did not use reordering
of BDDs variabled] and we tabled the s /2 predicate. The graph of the execu-
tion times (Figure [[) shows that PITA achieves a large speedup with respect to
ProbLog.

-e-ProbLog
——=PITA

0 20 40 N 60 80 100

Fig. 1. Hidden Markov model.

The biological network programs compute the probability of a path in a
large graph in which the nodes encode biological entities and the links represents
conceptual relations among them. Each program in this dataset contains a non-
probabilistic definition of path plus a number of links represented by probabilistic
facts. The programs have been sampled from a very large graph and contain
200, 400, . .., 10000 edges. Sampling was repeated ten times, to obtain ten series
of programs of increasing size. In each program we query the probability that
the two genes HGNC_620 and HGNC_983 are related. For PITA, we used the

4 All experiments were performed on Linux machines with an Intel Core 2 Duo E6550
(2333 MHz) processor and 4 GB of RAM.

5 For each experiment we used either group sift automatic reordering or no reordering
of BDDs variables depending on which gave the best results.

definition of path from [3] that performs loop checking explicitly by keeping the
list of visited nodes. For ProbLog we used a definition of path in which tabling
is exploited for performing loop checking. path/2, edge/2 and arc/2 are tabled
in ProbLog, while only path/2 is tabled in PITA. We found these to be the
best performing settings for the two systems. Figure shows the number of
subgraphs for which each algorithm was able to answer the query as a function
of the size of the subgraphs, while Figure shows the execution time averaged
over all and only the subgraphs for which both algorithm succeeded. Here there
is no clear winner, with PITA faster for smaller graphs and ProbLog solving
slightly more graphs and faster for larger graphs.

mmmmm o
o | B St
8
7 "
2 & _10%
3 ° e
<4 E10’
3 10°
2
107
jE=EE T |
500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Edges Size
(a) Number of successes. (b) Average execution times on

the graphs on which both algo-
rithms succeeded.

Fig. 2. Biological graph experiments.

The four datasets of [4] are: bloodtype, that encodes the genetic inheri-
tance of blood type; growingbody, that contains programs with growing bodies;
growinghead that contains programs with growing heads, and uwcse, that en-
codes a university domain. The best results for ProbLog were obtained by using
tabling in all experiments except growinghead. For PITA| all the predicates are
tabled. The execution times of PITA and ProbLog are shown in Figures and
[B(b)l f(a) and m In bloodtype, growingbody and growinghead variable re-
ordering was turned off for both systems, while in uwcse group sift automatic
reordering was used. In these experiments PITA is faster and more scalable than
ProbLog.

References

1. De Raedt, L., Demoen, B., Fierens, D., Gutmann, B., Janssens, G., Kimmig, A.,
Landwehr, N., Mantadelis, T., Meert, W., Rocha, R., Santos Costa, V., Thon, 1.,
Vennekens, J.: Towards digesting the alphabet-soup of statistical relational learning.
In: NIPS*2008 Workshop on Probabilistic Programming (2008)

6 For the missing points at the beginning of the lines a time smaller than 107° was
recorded. For the missing points at the end of the lines the algorithm exhausted the
available memory.

10* 102

10°

Time (s)

@
SRS L)
s E10
- T 3
1077 wﬁf 2
5 ProbLog ——PITA
-4 —PITA —e-ProbLog

0 10 2’\? 30 40 20 40 N 60 80 100

(a) bloodtype. (b) growingbody.

Fig. 3. Datasets from (Meert et al. 2009).

—o-ProbLog
—PITA

—ProbLog
——PIT.
107 107 PITA

5 10 15 20 0 5 10 15
N N

(a) growinghead. (b) uwcse.

Fig. 4. Datasets from (Meert et al. 2009).

. De Raedt, L., Kimmig, A., Toivonen, H.: ProbLog: A probabilistic Prolog and its
application in link discovery. In: International Joint Conference on Artificial Intel-
ligence. pp. 2462-2467 (2007)

. Kimmig, A., Demoen, B., De Raedt, L., Costa, V.S., Rocha, R.: On the implemen-

tation of the probabilistic logic programming language problog. Theor. Pract. of

Log. Prog. 11(Special Issue 2-3), 235-262 (2011)

. Meert, W., Struyf, J., Blockeel, H.: CP-Logic theory inference with contextual vari-

able elimination and comparison to BDD based inference methods. In: International

Conference on Inductive Logic Programming. KU LEuven (2009)

. Poole, D.: Abducing through negation as failure: stable models within the indepen-

dent choice logic. J. Log. Prog. 44(1-3), 5-35 (2000)

. Riguzzi, F., Swift, T.: Tabling and Answer Subsumption for Reasoning on Logic

Programs with Annotated Disjunctions. In: International Conference on Logic Pro-

gramming. LIPIcs, vol. 7, pp. 162-171. Schloss Dagstuhl-Leibniz-Zentrum fuer In-

formatik (2010)

. Sato, T.: A statistical learning method for logic programs with distribution seman-

tics. In: International Conference on Logic Programming. pp. 715-729. MIT Press

(1995)

. Vennekens, J., Verbaeten, S., Bruynooghe, M.: Logic programs with annotated dis-

junctions. In: International Conference on Logic Programming. LNCS, vol. 3131,

pp. 195-209. Springer (2004)

	The PITA System for Logical-Probabilistic Inference

