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Abstract. A graph contraction pattern is a triplet h = (V,E, U) where
(V,E) is a connected graph and U is a distinguished subset of V . The
graph contraction pattern matching problem is defined as follows. Given
a graph contraction pattern h = (V,E,U) and a graph G, can G be
transformed to (V,E) by edge contractions so that for any v ∈ V \ U ,
only one vertex in G can be mapped to v? We show that this problem is
solvable in polynomial time if (1) (V,E) is of bounded treewidth, (2) U
is an independent set of (V,E), and (3) all vertices in U are of bounded
degree.

1 Introduction

Large amount of data having graph structures, such as map data, CAD, biomolec-
ular, chemical molecules, the World Wide Web, are stored in databases. Almost
chemical compounds stored in the NCI chemical dataset1 are known to be ex-
pressed by outerplanar graphs. Horváth et al. [2] proposed an efficient frequent
subgraph mining algorithm for a dataset expressed by outerplanar graphs. We
have been developing general graph patterns with structured variables which
can be replaced with arbitrary connected graphs, in order to represent expres-
sive patterns appearing in a given dataset of graphs. In [7], we introduced a
general concept of block-preserving graph patterns and presented a frequent
graph pattern mining algorithm on outerplanar graphs.

Toward a graph mining on more general classes of graphs, Horváth and Ra-
mon proposed a frequent subgraph mining algorithm for a dataset of graphs of
bounded treewidth [3]. Some NP-completeness problems on graphs are solvable
in polynomial time if the input can be restricted to graphs of bounded treewidth.
From a practical viewpoint, 99.97% of 250, 251 chemical compounds in the NCI
chemical dataset are expressed by graphs of treewidth at most 3 [3]. We proposed
a graph pattern of bounded treewidth and a polynomial time pattern matching
algorithm on the graph patterns [6]. On the other hand, the pattern matching
problem on graph patterns is computationally expensive unless a graph pattern
is essentially 2-connected [4]. In this paper, in order to discover more than 2-
connected graph patterns in a target dataset, we define a new graph pattern

1 http://cactus.nci.nih.gov.
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Fig. 1. Let h = (V,E,U) be a graph contraction pattern, where (V,E) is a connected
graph of treewidth 2 and U = {b, c, d, g, j, k}. h is a common pattern of G1 and G2

expression, called a graph contraction pattern, by using a concept of edge con-
tractions on connected graphs.

H-contractibility problem takes as input two graphs G and H, and asks
whether G can be transformed to H by edge contractions. Based on the H-
contractibility problem, we define a graph contraction pattern as a triplet h =
(V,E,U) where (V,E) is a connected graph and U is a distinguished subset of
V . The graph contraction pattern matching problem is defined as follows. Given
a graph contraction pattern h = (V,E,U) and a graph G, can G be transformed
to (V,E) by edge contractions so that for any v ∈ V \ U , only one vertex in G
can be mapped to v? In Fig. 1, G1 is transformed to (V,E) by edge contractions
so that only one vertex in G1 is mapped to each vertex in V \ U . G2 is also
transformed to (V,E) in such a way. In this paper, we show that this problem
is solvable in polynomial time if (1) (V,E) is of bounded treewidth, (2) U is an
independent set of (V,E), and (3) all vertices in U are of bounded degree.

2 Preliminaries

2.1 Normalized tree decomposition

All graphs in this paper are simple and loopless. For a graph G, we denote by
V (G) and E(G) the vertex set and the edge set of G, respectively. We denote
by N(v) the set of neighbors of a vertex v. For U1, U2 ⊆ V (G), we say that U1

and U2 are adjacent if there is an edge {v, w} such that v ∈ U1 and w ∈ U2. For
U ⊆ V (G), we denote by G[U ] the subgraph of G induced by U .

A tree-decomposition of a graph G is a 2-tuple (T,X ) where T is a tree and
X = {X (α) | X (α) ⊆ V (G) for all α ∈ V (T )} that satisfies the following three
conditions. (1)

∪
α∈V (T ) X (α) = V (G), (2) ∀v, w ∈ V (G) [{v, w} ∈ E(G) ⇒

∃α ∈ V (T ) [{v, w} ⊆ X (α)]], and (3) ∀α, β, γ ∈ V (T ) [β is on the path from α
to γ in T ⇒ X (α) ∩X (γ) ⊆ X (β)]. The width of a tree-decomposition (T,X ) is
maxα∈V (T ) |X (α)|−1. The treewidth of a graph G is the minimum width over all
possible tree-decompositions of G. We say that a tree-decomposition of a graph
G is optimal if its width equals to the treewidth of G.

Thereafter, to distinguish from a vertex of graph G, we call a vertex of T a
node. Below we assume that the tree T of a tree-decomposition (T,X ) is a rooted
tree by specifying a node of T . For a tree-decomposition (T,X ), we denote by
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T ↓a the maximal subtree rooted at a node α ∈ V (T ), by X (T ↓α) the union of
elements of nodes of T ↓α, i.e., X (T ↓α) =

∪
β∈V (T↓α) X (β).

A tree-decomposition (T,X ) is smooth if ∀{α, β} ∈ E(T ) [|X (α) \ X (β)| =
|X (β) \ X (α)| = 1]. A tree-decomposition (T,X ) has subtree connected charac-
teristic if ∀{α, β} ∈ E(T ) [β is a child of α and G[X (T ↓β) \X (α)] is connected].
A tree-decomposition (T,X ) is normalized if it satisfies the following three con-
ditions. (1) (T,X ) is optimal, (2) (T,X ) is smooth, and (3) T is a rooted tree
and (T,X ) has subtree connected characteristic. Nagoya et al. [5] gave a polyno-
mial time algorithm for constructing a normalized tree-decomposition from any
tree-decomposition.

Theorem 1. [5] A normalized tree-decomposition of G of treewidth k is obtained
from any optimal tree-decomposition of G in O(kn2) time, where n = |V (G)|.

2.2 Graph contraction pattern

Let G and H be connected graphs. An H-witness structure W = {W (u)|u ∈
V (H)} is a partition of V (G) satisfying the following conditions. (1) ∀W (u) ∈
W [G[W (u)] is connected], and (2) ∀u, u′ ∈ V (H)[{u, u′} ∈ E(H) ⇔ ∃{v, w} ∈
E(G)[v ∈W (u), w ∈W (u′)]]. We call each setW (u) ∈ W theH-witness set of u.
When G has an H-witness structure, G can be transformed to H by contracting
each of H-witness sets into one vertex by edge contractions.

A graph contraction pattern h (GC-pattern, for short) is a triplet h = (V,E,U)
where (V,E) is a connected graph and U is a subset of V . We denote by V (h)
and E(h) the vertex set and the edge set of h, respectively. And for V ′ ⊆ V (h),
we denote by h[V ′] the graph contraction subpattern (GC-subpattern, for short)
induced by V ′, i.e., h[V ′] = (V ′, E(h) ∩ {{v, w}|v, w ∈ V ′}, U ∩ V ′).

We say that a GC-pattern h matches a graph G if G has a (V (h), E(h))-
witness structure W = {W (u)|u ∈ V (h)} satisfying ∀v ∈ V (h) \ U [|W (v)| = 1].
We call an element of U a contractible vertex , and an element of V (h) \ U an
uncontractible vertex . And for a GC-pattern h, a (V (h), E(h))-witness structure
of h is called an h-witness structure.

2.3 Main Results

The graph contraction pattern matching problem is to decide whether or not a
given GC-pattern h matches a given graph G. Our main result is the following
theorem.

Theorem 2. Given a GC-pattern h = (V,E,U) and a graph G, the GC-pattern
matching problem is solvable in polynomial time if h satisfies the following three
conditions. (1) (V,E) is of bounded treewidth, (2) U is an independent set of
(V,E), and (3) all vertices in U are of bounded degree.

We show a polynomial time algorithm that solve this problem in the next
section. Our algorithm is based on the idea of the graph isomorphism algorithm
for a graph with bounded treewidth in [5]. A GC-pattern matching problem
becomes intractable if it does not satisfy the condition of Theorem 2.
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Theorem 3. For inputs G and h, the GC-pattern matching problem is NP-
complete if the degree of a vertex in U is not bounded by a fixed constant.

Moreover, we can show the time complexities of this problem in the cases
whether or not each condition of Theorem 2 is satisfied. We summarize them
in the next table. ‘T’ means that the condition is satisfied and ‘F’ means not
satisfied. And ‘*’ may be either ‘T’ or ‘F’. The class GI is the set of problems
with a polynomial-time reduction to the graph isomorphism problem.

U is an independent set of (V (h), E(h)) F [1] * T

All vertices in U are of bounded degree * F [this paper] T

(V (h), E(h)) is of a bounded treewidth * * F T

Time Complexity NP-complete GI-hard P [this paper]

3 A Pattern Matching Algorithm for GC-Patterns

We assume that a given GC-pattern h satisfies the conditions of Theorem 2.
And let (T,X ) be a normalized tree-decomposition of (V (h), E(h)).

In our algorithm, we construct a whole witness structure from a union of
partial witness structures. So we need the following definition.

Definition 1. For two GC-subpatterns h1, h2 of h, let W1 and W2 be h1- and
h2-witness structures, respectively Then, we say that W1 does not contradict W2

if it satisfies the following conditions. (1) W1(v) = W2(v) for any v ∈ V (h1) ∩
V (h2), (2) for any u ∈ V (hi) and v ∈ V (h2), {u, v} ∈ E(h) ⇔W1(u) and W2(v)
are adjacent.

And, we construct a partial witness structure from an injection.

Definition 2. Let dom be a set of contractible vertices, all of those neighbors,
and some uncontractible vertices of h. Then for an injection ψ : dom→ V (G), we
construct a ψ-structure Wψ = {Wψ(v)|v ∈ dom} as follows. (1)Wψ(v) = {ψ(v)}
if v is uncontractible, (2) otherwise, Wψ(v) is the vertex set of the connected
component in G[V (G) \ ψ(N(v))] that includes ψ(v).

If ψ is suitable, then Wψ becomes one of h[dom]-witness structures.

Definition 3. For a node α ∈ T , let dom(α) be a vertex set X (α) ∪ {N(v)|v ∈
X (α)∩U}. And, we say that a mapping ψ : dom(α) → V (G) is a node mapping
of α if Wψ is an h[dom(α)]-witness structure.

Let α′ be the parent node of α. Then h[X (T ↓α) \ X (α′)] is connected. We
define Dα,ψ corresponding to h[X (T ↓α)\X (α′)] as follows. Dα,ψ is the connected
component in the graph obtained from G by removing Wψ(h) for each h ∈
X (α)∩X (α′) that includes Wψ(v) where v ∈ X (α) \ X (α′). Moreover we define
ISO(α) as the set of all node mappings ψ satisfying the following condition.
G[V (Dα,ψ) ∪

∪
v∈dom(α)Wψ(v)] has an h[X (T ↓α) ∪ dom(α)]-witness structure

such that does not contradict Wψ. From these definitions, we can easily see the
following lemma.
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Fig. 2. The algorithm incrementally decides whether a node mapping ψ is an element
of ISO(α) or not.

Lemma 1 A GC-pattern h matches a graph G if and only if ISO(rT ) ̸= ∅
where rT is the root of T .

Let β1, . . . , βm be the children of α. Then the GC-pattern obtained from
h[X (T ↓α) \ X (α′)] by removing X (α) has m connected components. Similarly,
the graph obtained from Dα,ψ by removing Wψ(v) for each v ∈ X (α) has m′

connected components Di (i = 1, . . . ,m′). If m ̸= m′, G has no h-witness struc-
ture that does not contradict Wψ. Afterwards, we assume that m = m′. For each
βi, we assume that there is a node mapping ψβi ∈ ISO(βi) such that Wψβi

does
not contradict Wψ. Let Wβi be a witness structure that makes ψβi an element
of ISO(βi). Then we construct a witness structure W as the union of Wψ and
each Wβi . Then, the constructed W makes ψ an element of ISO(α) (Fig. 1).

Lemma 2 ψ ∈ ISO(α) if and only if there is an injection from β1, . . . , βm to
D1, . . . , Dm satisfying the following condition. If βi is mapped to Dj , there is a
node mapping ψβi of βi such that Wψβ

does not contradict Wψ and (Dβi,ψi =
Dj) ∧ (ψβi ∈ ISO(βi)).

For deciding whether ψ ∈ ISO(α) or not, we construct a bipartite graph
defined as follows and solve the perfect matching problem on the bipartite graph.

Definition 4. For node α, let B be the set of all children of α. And let C be the
set of all connected components of the graph obtained from Dα,ψ by removing
Wψ(h) for each h ∈ X (α). And, let E = {{β,D}|(β ∈ B) ∧ (D ∈ C) ∧ (∃ψβ ∈
ISO(β,G)[(Wψβ

does not contradict Wψ) ∧ (D = Dβ,ψβ
)]}. Then we define a

bipartite graph Q(α,ψ) = (B,C,E).

Lemma 3 The bipartite graph Q(α, ψ) has a perfect matching if and only if
ψ ∈ ISO(α).

We give a formal description of our algorithm in Fig. 3. The correctness of our
algorithm is shown from Lemmas 1 and 3. Our algorithm runs in O(Nk(d+1)+1.5)
time, where N is the number of vertices of G and d is the maximum degree of
the vertices of U . Then we can show Theorem 2
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Algorithm Contraction Pattern Matching;
Input : A GC-pattern h, a graph G,

a normalized tree decomposition (T,X ) of (V (h), E(h));
begin

forall α ∈ V (T ) do ISO(α) := ∅; // Initialization.
while ∃α ∈ V (T ) [ISO(β) ̸= ∅ for all children β of α] do // Main Processes.

forall node mappings ψ of α do
if Node Mapping Extension(h, (T,X ), α,G, ψ) returns yes then

ISO(α) := ISO(α) ∪ {ψ};
if ISO(rT ) ̸= ∅ then return yes else return no // Decision.

end.

Procedure Node Mapping Extension(h, (T,X ), α,G, ψ);
Input : a GC-pattern h, a normalized tree-decomposition (T,X ),

a node α ∈ V (T ), a graph G, and a node mapping ψ of α;
begin

Construct a bipartite graph Q(α,ψ) from h, (T,X ), α, G, and ψ;
if Q(α,ψ) has a perfect matching then return yes else return no

end;

Fig. 3. GC-pattern matching algorithm.
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