
Projection-based PILP: computational learning
theory with empirical results

Hiroaki Watanabe and Stephen Muggleton

Imperial College London, 180 Queen’s Gate, London SW7 2AZ, UK

Abstract. Evaluations of advantages of Probabilistic Inductive Logic
Programming (PILP) against ILP have not been conducted from a com-
putational learning theory point of view. We propose a PILP framework,
projection-based PILP, in which many-to-one projection functions are
used to produce a “lossy” compression dataset from an ILP dataset. We
present sample complexity results including conditions when projection-
based PILP needs less examples than PAC. We experimentally confirm
the theoretical bounds for the projection-based PILP in the Blackjack
domain using Cellist, a system which machine learns Probabilistic Logic
Automata. In our experiments projection-based PILP shows lower pre-
dictive error than the theoretical bounds and achieves substantially lower
predictive error than ILP. To the authors’ knowledge this is the first pa-
per describing both a computer learning theory and related empirical
results on an advantage of PILP against ILP.

1 Introduction

Probabilistic Inductive Logic Programming (PILP) [4] demonstrates a way to
extend ILP towards relational Machine Learning (ML) under uncertainty. From
an ILP perspective, the following question is still pertinent: (Q)Does the addi-
tional representational power of probabilistic logics (p-logics) make logic-based
ML harder? We investigate this question in this paper by developing a compu-
tational learning theory that characterises PILP.

Our PILP framework, projection-based PILP, is illustrated in Fig. 1 in which
given positive/negative examples for learning a Blackjack player model are pro-
jected onto a “lossy” probabilistic example (p-example). The projection f maps
a number on a playing card (A,..,K) onto a new card (C1,..,C4) as defined in
the figure. The projection is “lossy” since we lose the information about the
original labels (pos/neg) as it is draw after the projections. To handle this un-
certainty, we attach an estimated probability label, 0.5, to the projected example
to express the degree of positiveness. In this setting, f and estimation errors of
the probability labels could affect the sample complexities of ML from the pro-
jected p-examples. The structure of this paper is as follows. In Chapter 2, we
provide theoretical results on sample complexities in our PILP framework. We
compare our theoretical results with empirical results in the Blackjack domain
in Chapter 3. Discussions conclude this paper in Chapter 4.

2

Fig. 1. “Lossy” Projection and Probabilistic Example

2 Projection-based PILP
Projection-based PILP can be achieved by a 2-steps approach: [Step1] pro-
jecting given examples to p-examples and [Step2] learning hypotheses using the
p-examples. In [Step1], Learner is expected to provide the following function.

Definition 1 (Projection Function f). Assume both X and X ′ are non-
empty sets. Let f be a surjective (or many-to-one) function from X to X ′.

An example of f can be found in Fig. 1. Let E be a set of N Boolean labelled
given examples, 〈(e1, l1), ..., (eN , lN)〉 in which li = 1 for a positive example
whereas li = 0 for a negative example. Each of the N examples is then projected
via f onto m p-examples, E′ = {(e′1, p̂1), ..., (e′m, p̂m)}, in which p̂j is an esti-
mated probability label for e′j. In Fig. 1, both (e1, 1) and (e2, 0) are projected
onto (e′1, 0.5). Let nj be the number of Boolean labelled examples mapped onto
e′j . A lower bound of nj for the estimation of a true probability pj , p̂j , is obtained
as follows. Our proof can be found in Appendix A.

Theorem 1. For each e′j ∈ E′, sample complexity for estimating pj with error

ε at confidence level 1 − δ is nj > π(1−δ)2

32 ε2 .

For example, we obtain nj > 8.86 when δ = 0.05 and ε = 0.1. In the case of
δ = 0.05 and ε = 0.05, the lower bound is nj > 35.4.

[Step1] is described in the following Sequential Probability Label Estimation
algorithm. Intuitively, we continue both samplings and projections from E to
E′ until enough Boolean-labelled examples are mapped onto each p-examples.
Note that the time bound T is required since it might take time to obtain n
examples for all e′j under some unrepresentative probability distribution over
E. Regarding the step 4 in the following algorithm, the estimation error of e′j
is obtained as follow. Discussions about sequential sampling algorithms can be
found in [7]. Our proof can be found in Appendix A.

Corollary 1 (Estimation Error εδ). The estimation error of e′j, εδj, for a

confidence level δ is εδj =
√

2 erf−1(1−δ)

r
1

nj−1
Pnj

k=1(lk−p̂j)2

√
nj

in which nj is the
number of Boolean labelled examples mapped onto e′j and erf(x) is the Gauss
error function erf(x) = 2

π

∫ x
0 e−t2dt.

3

Sequential Probability Label Estimation

Input: A sequence of Boolean-labelled examples ei ∈ E, 〈(e1, l1), (e2, l2), ...〉
Projection function f , confidence level δ, error level ε, time bound T

Output: Actual estimation error εδ

A set of m probabilistic examples {(e′1, p̂1), ..., (e
′
m, p̂m)}

1. Set i = 1, j = 1, cntk = 0, tk = 0 (1 ≤ k ≤ m), X ′ = ∅.
Compute the sample complexity n = π(1−δ)2

32 ε2

2. If i ≤ T , take (ei, li), otherwise go to Step 4.

3a. If e′j &∈ X ′ such that e′j = f(ei), set cntj = 1 and add (e′j , cntj) to X ′.

Set j = j + 1. If li = 1, tj = tj + 1. If cntj ≤ n for all (1 ≤ j ≤ m),
set i = i + 1 and go to Step 2, otherwise go to Step 4.

3b. If e′j ∈ X ′, update cntj of (e′j , cntj) ∈ X ′ to cntj = cntj + 1. Set j = j + 1.

If li = 1, tj = tj + 1. If cj ≤ n for all (1 ≤ j ≤ m), set i = i + 1 and
go to Step 2, otherwise go to Step 4.

4. Compute the estimation error εj for each j (1 ≤ j ≤ m).
5. Output the largest εj as εδ and {(e′1, p̂1), ..., (e′m, p̂m)} such that p̂j = tj/cntj .

6. Exit.

Next, [Step1] and [Step2] are linked by the estimation error εδ that is used
as a constant in our complexity result in [Step2] as follows. Note that in our
projection-based PILP, a hypothesis h returns a “degree of acceptance” h(e′j) in
a probability value for e′j .

Theorem 2 (Sample Complexity for Projection-based PILP). Given p-
examples with error εδ, for any εδ, ε′, and δ′ such that 0 ≤ ε′+2εδ ≤ 1, 0 ≤ δ ≤ 1
and 0 ≤ δ′ ≤ 1, let m be the number of the p-examples sufficient for any εδ

consistent learner to successfully learn any target concept in the hypothesis space
H with true error ε′ in confidence (1−δ′). Then m is bounded as m ≥ ln|H|+ln 1

δ′
ε′+2εδ

.

Our proof is in Appendix A. We compare this upper bound with a lower bound on
sample complexity of PAC learning to clarify the conditions in which projection-
based PILP needs less examples than PAC. The lower sample bound of PAC is re-
ported in [1] as follows. Consider any concept class C such that VC-dimension [2]
V C(C), any learner L, and any 0 < ε< 1/2, and 0 < δ < 1/100. Then there
exists a distribution D and target concept in C such that if L observes fewer
examples than max

[
1
ε ln

(
1
δ

)
, V C(C)−1

32ε

]
then with probability at least δ, L

outputs a hypothesis h having errorD(h) > ε. If H contains C and |H | is finite,
the above formula can be written [2] as max

[
1
ε ln

(
1
δ

)
, log2|H|−1

32ε

]
.

Theorem 3. Consider any PAC learner LPAC with a hypothesis space |H |, any
0 < ε < 1/2, 0 < δ < 1/100, and a distribution over examples DPAC . Then there
exists a distribution DPAC , target concept in H, such that if a projection-based
learner L can design projection function that results the ε-exhausted hypothesis

space H ′ such that |H|
|H′| > 2

δ′ when 1
ε ln

(
1
δ

)
< log2|H|−1

32ε or |H ′| <
(

1
δ′

) 2εδ
ε when

1
ε ln

(
1
δ

)
≥ log2|H|−1

32ε then with probability at least δ′, L outputs a hypothesis
h ∈ H ′ having errorD(h) < ε + 2εδ with less examples than any PAC learner.

4

Proof is in Appendix A. For example, (a) if the projected hypothesis space H ′

is 20 times smaller than the original hypothesis space H , (b) |H ′| can achieve
δ′ = 0.1, and (c) the size of the original hypothesis is 274 < |H | , projection-based
PILP has an advantage in terms of the number of examples for εδ = ε = δ = 0.1.

3 Experiments in Blackjack Domain
Material: We experimentally compare ILP and projection-based PILP on the
Blackjack domain. Blackjack is a card game between the player and the dealer.
We adopt the standard face-up game rule. We assume that the player and the
dealer have the following strategies to play: the player deals only when the
sum is less than 16 whereas the dealer is less than 19. Based on this strategies,
we implemented a Blackjack simulator that estimate (a) the probability of the
player’s win is 51.3% and (b)the average number of cards drawn in a positive
example is 5.97. With these numbers, we estimate that there could exist 162175
(= 52 × 51 × 50 × 49 × 48 × 47 × 0.513) positive (player’s won) examples.

We explore three different representations. First representation uses the orig-
inal number of cards and the score of the hands. In the second and the third
representations, a number printed on a card is projected by f defined in Fig. 1
and the points are projected by f2 and f3 respectively as follows. Projection
f2 maps from the points N to (N) whereas f3 maps (a)1 ≤ N ≤ 15 to 1,
(b)16 ≤ N ≤ 19 to 2, (c)20 ≤ N ≤ 21 to 3, and (d)22 ≤ N to 4.

Regarding the creation of p-examples, the 52 playing cards are randomly
shuffled and a sequence of plays is generated based on the strategies for each
game. The generated sequence is stored in the multi-set E0 as a non-projected
example. We re-shuffled the 52 cards and generate sequences of play until we
obtain 10000 examples in E0. Then E0 is taken by Sequential Probability
Label Estimation algorithm. E1 is created by combining f and f1 whereas E2

is by f and f2. We separated E0, E1, and E2 into (a) training data and (b) test
data. Using the training data, we generated 5 sets of training examples with 5
different sizes (10, 20, 30, 40, and 50). The size of the test data is 100 in our
experiment.

Method: We learn the player ’s strategy from the observations of their plays
as a Probabilistic Logic Automaton (PLA) using a Machine Learning System
Cellist [6]. Cellist supports two-steps model construction: structure learning of
the PLA followed by EM-based parameter estimation. Our structure learning
algorithm consists of (a) state mergings for topology learning of Automata and
(b) Plotkin’s lgg [3] motivated most general specialisation of existentially quan-
tified conjunctions of literals. Regarding inference in PLAs, the probability of
the given input sequence being accepted by a PLA model is computed by the
Forward Algorithm that is a logical modification of HMM’s forward inference
algorithm [5]. Given a p-example, the gap between the acceptance-probability of
the given example and the probability label attached to the p-example is treated
as a predictive error.

Results: Our empirical results are shown in Fig.2 and Fig.3. Fig.2 shows that
the ILP-based approach results hypotheses in large errors. As we see in Fig.2 and

5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

Er
ro

r

Number of examples

ILP: Empirical f1
PILP: Theoretical f2

PILP: Empirical f2

Fig. 2. ILP vs f1-based PILP

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

Er
ro

r

Number of examples

ILP: Empirical f1
PILP: Theoretical f3

PILP: Empirical f3

Fig. 3. ILP vs f2-based PILP
demerit

Fig.3, projection-based PILP shows lower error compared with the ILP-based
approach although the projection f2 resulted in hypotheses with lower error than
the hypotheses via projection f1 for all the sample sizes.

4 Discussions and Conclusions
Theorem 3 suggests the answer for (Q)Does the additional representational power
of probabilistic logics make logic-based ML harder? is “No, not always in terms
of the number of examples” in PILP. In our approach, f causes εδ for each p-
example, however, ML in the projected knowledge representations overcomes
this demerit in the Blackjack domain. One possible explanation in PLA is as
follows. The game point in the non-projected representation increases 1 point
each whereas f1 and f2 result in coarser representations. In Plotkin’s lgg, “finer”
logical ground terms are more likely to be replaced by first-order variables which
could cause over-fittings.

Regarding the comparison between f1 and f2, the projection f2 encodes more
information about the strategies and rules in the form of the thresholds 16, 19,
and 21. Since f2 shows better predictive accuracy, a quality of projection func-
tions could affect the result of the learning. Our projection function is flexible
enough to encode more complex functions unless it is a many-to-one function.
We believe that the projection-based PILP has potential for applying PILP in
large numerical datasets with relations effectively.

Appendix A: Proof of Theorem 1: Central Limit Theorem states limnj→∞ Pr[
X−njp√
njp(1−p)

≤
z] = Φ(z) where Φ(z) is the cumulative distribution function of the standard normal

distribution of N(0,1). This leads Pr[p̂ > p + ε] = Pr[p̂ < p − ε] ≈ 1 − Φ(
ε

√
nj

p(1−p)) since

Φ(−z) = 1 − Φ(z) and Φ(− ε
√

nj

p(1−p)) = Pr(
X−njp√
njp(1−p)

≥ ε
√

nj√
p(1−p)

) = Pr(X/nj − p ≥ ε).

Because of Pr[p̂ > p + ε] + Pr[p̂ < p − ε] < δ, we obtain Φ(
ε

√
nj

p(1−p)) > 1 − 1
2 δ.

From this formula, we obtain nj > π(1−δ)2

2ε2
{p(1 − p)}2 since (1) Φ(z) can be ex-

pressed as: Φ(z) = 1
2 [1 + erf(z√

2
)] where erf is a special function called the error

function: erf(z) = 1√
π

P∞
nj=0

(−1)
nj z

2nj+1

nj !(2nj+1) and (2) the Maclaurin series of erf−1(z) is

erf−1(z) =
√
π(1

2z + 1
24πz3 + ...). Finally nj > π(1−δ)2

2ε2
{p(1 − p)}2 > π(1−δ)2

2ε2
. +,

Proof of Corollary 1: For nj > 30, the Central Limit Theorem guarantees the error
εδj forms a Normal distribution and εδj can be calculated by using the estimated

6

Fig. 4. (a)Worst Case Error, (b)Relation between lower bound of PAC and upper
bound of projection-based PILP

variance of population, σ̂ = s/
√

nj where s2 is the sample variance. εδj is defined as a

function of δ, εδ = zσ̂, where z is a function of δ such that z =
√

2 erf−1(1−δ). Then for
estimation of e′j , the sample variance s2 can be written as s2

j = 1
nj−1

Pnj
k=1(lk − p̂j)

2.

This leads the corollary. +,
Proof of Theorem 2: Let us introduce a εδ consistent hypothesis h such that p̂j−εδ ≤
h(e′j) ≤ p̂j + εδ holds for every (e′j , p̂j) ∈ E′. Then an inconsistent hypothesis h has
a worst-case error, ε′ + 2εδ as shown in Fig. 4(a). Let h1, ..., hk be all the hypotheses
with errors greater than ε′. The probability that this hypothesis will be εδ consistent
with m independently drawn p-examples is at most {1− (ε′ + 2εδ)}m. The probability
that at least one of k will be εδ consistent with all m probabilistic training examples is
at most k{1− (ε′ +2εδ)}m. Since k ≤ |H |, this is at most |H |{1− (ε′ +2εδ)}m. Finally,
we use a general inequality stating: (1 − x) ≤ e−x if 0 ≤ x ≤ 1. For 0 ≤ ε′ + 2εδ ≤ 1,

|H |{1− (ε′ +2εδ)}m ≤ |H |e−(ε′+2εδ)m. By considering the upper bound δ′ of this error,

we get |H |e−(ε′+2εδ)m ≤ δ′. This leads m ≥ ln|H|+ln 1
δ′

ε′+2εδ
. +,

Proof of Theorem 3: We consider conditions when our PILP has smaller sample

complexity than PAC. Fig. 4 (b) shows the case in which a number of required examples

for our PILP is always smaller than a number of examples for PAC. This figure shows
the relation between the upper sample complexity of our PILP in Theorem 2 should

be smaller than the lower bound of sample complexity of PAC shown in [1]. Regarding

the first case in which log2|H|−1
32ε >

ln|H′|+ln 1
δ′

ε+2εδ
, this leads ln(|H|/2)

ln(|H′|/δ′) > 32εln2
ε+2εδ

. Since
32εln2
ε+2εδ

> 1 for 0 < ε < 1 and 0 < εδ < 1, we obtain ln(|H|/2)
ln(|H′|/δ′) > 1. This leads |H |/2 >

|H ′|/δ′. Therefore we get |H|
|H′| > 2

δ′ . Let us consider the second case in which 1
ε ln

`
1
δ

´
is

greater than (1). 1
ε ln

`
1
δ

´
>

ln|H′|+ln 1
δ′

ε+2εδ
If we consider δ = δ′, we obtain |H ′| <

`
1
δ

´ 2εδ
ε .

References

1. A Ehrenfeucht, D. Haussler, M. Kearns, and L. Valiant. A general lower bound
on the number of examples needed for learning. Informution and computation,
82:247–261, 1989.

2. T.M. Mitchell. Machine learning. McGraw-Hill, 1997.
3. G. Plotkin. A note on inductive genralization. Machine Intelligence, 5:153–163,

1970.
4. Luc De Raedt and Kristian Kersting. Probabilistic inductive logic programming.

ALT-2004, LNCS 3244:19–36, 2004.
5. Stuart J. Russell and Peter Norvig. Artifical intelligence: A modern approach.

Prentice Hall, 2nd edition, 2003.
6. Hiroaki Watanabe and Stephen Muggleton. Can ILP be applied to large datasets?

In LNCS 5989 (ILP 2009), pages 249–256, 2009.
7. Osamu Watanabe. Sequential sampling techniques for algorithmic learning theory.

Theoretical Computer Science, 2348(1,2):3–14, 2005.

