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Abstract. Graph mining methods have emerged to address the limitations of 

itemset mining algorithms when analyzing structured data. It may therefore 

appear counterproductive to employ the latter for mining graph data. 

Nevertheless, for graph classification tasks, where the focus is on predictive 

performance rather than comprehensibility, the use of itemset mining can be a 

sensible alternative to graph mining algorithms. In this paper, we examine the 

pros and cons of itemset mining on graph data using 18 medicinal chemistry 

datasets, and show that the itemset mining algorithms are not only efficient and 

reliable on graph classification and regression, but also competitive with the 

graph mining algorithms.  
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1 Introduction 

Methods that involve learning from graph databases broadly fall into three categories; 
graph similarity based methods [1], boosting methods [2] and mining sub-graphs from 

graph databases [3]. The latter, subgraph mining, methods differ from methods of the 
former categories due to their two-step approach of first discovering sub-graphs that 

possess high correlation with the target variable, and then use these sub-graphs as 

attributes to transform the graphs in the data base in to feature-vectors, which could be 
used together with standard machine learning algorithms. Methods of mining sub-graphs 

from graph databases include frequent sub-graphs and their representative subsets [4-7], 
interesting sub-graphs [8-10], significant sub-graphs [11], using methods such as sampling 

[12], pattern summarization [13], iterative feature selection [14] and so forth. These sub-
graphs could be used within a spectrum of data mining tasks , such as classification, 

clustering, finding association rules, data indexing etc.  

Sub-graph mining involves discovering sub-graphs and calculating their support. 
Discovery of sub-graphs could be apriori based or pattern-tree based. Apriori based [5] 

methods uses a breadth-first search for discovering candidate sub-graphs. In doing so, it 
starts with smaller sub-graphs and extends iteratively by increasing the size of the newly 

discovered sub-graphs by one node or edge. Usually, two sub-graphs of size k , i.e., graphs 
with k  number of nodes, are joined together to form a subgraph of size k+1[3]. The 

essential drawback of this procedure is the overhead involved when joining two k sized 
graphs. The pattern-tree based approaches employ a depth-first search strategy [4,7]. In 
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each iteration the pattern growth algorithm extends sub-graphs discovered during the 
previous iteration by one edge at every possible direction. Methods have been introduced 

to limit re-discovering the same graphs by techniques such as  right-most expansion of the 
pattern tree [4]. Yet, it is a challenge to avoid the rediscovery of sub-graphs due to the 

repetition of node and edge labels in the graphs. The candidate graphs discovered by either 
of the approaches require counting their support, i.e., finding the number of occurrences of 

the sub-graphs in the graph database, which involves the subgraph isomorphism test, 
which is NP-Hard, or some canonical transformations to skip the isomorphism test that 

adds the transformation cost. Therefore, the graph mining problem could be complex 

depending on the size of the graphs.  
Itemset mining algorithms discovers frequent or significant itemsets  from transaction 

databases. Discovery of frequent itemsets is also a two-step procedure involving search of 
frequent patterns and calculation of support. The itemset mining algorithms use a 

lexicographical order of the items prior to mining and use horizontal [15] or vertical [16] 
layouts for organizing the transaction database to support efficient scanning, which leads 

to a simpler support count. The apriori principle [15] is usually employed to limit the 

search space during the itemset discovery. The lexicographical order of the items also 
helps avoiding re-discovery of the same itemsets. Therefore, despite of its exponential 

growth of complexity with respect to the number of items, the frequent itemset mining 
approaches are computationally simpler than their graph mining counterparts. Hence, the 

use of frequent itemset mining algorithms for graph mining, whenever applicable, could 
lead to significant computational savings. In [17], it was shown that frequent itemset 

mining could be efficiently used for mining a special type of graphs which are constrained 

by unique node and edge lables. A method that employs maximal frequent itemset mining 
on general graph data is discussed in [6]. Yet, rarely any study can be found that analyzes 

the effectiveness of itemset mining for graph classification. This study is motivated by 
such a need.    

The rest of the paper is organized as follows. In the next section, the approach of using 
frequent itemset mining on graphs is described. In Section 3, an empirical investigation of 

using frequent itemset mining and graph mining on 18 medicinal chemistry datasets  is 
presented. Finally, in section four, conclusions are given together with possible further 

extensions of this study.  

2 Frequent itemset mining for graphs  

A graph is a quintuple G= {V, E,  ,}, where V is the set of vertices, E V×V  is the 

set of edges and  : V E   is the labeling function. A graph Gs = {Vs, Es, s, s} is 

said to be subgraph isomorphic to G, which is denoted by Gs  G, if there exists a 1–1 

mapping  f : Vs  V such that, v ∈ Vs, λs(v) = λ(f(v)) and, ( vi,vj)  Es, (f(vi), f(vj))  E 

and, (vi, vj)  E′, λ′ (vi, vj) = λ(f(vi), f(vj)). Further, we say Gs occurs in G if Gs  G. Let 

the database D contain a collection of graphs G, then, the support of a subgraph Gs in D is 
the number of occurrences of Gs in D.  

A graph may be transformed into an edge list L of G = {V, E, , }, in order to allow 

for applying itemset mining algorithms.  An edge list is defined as L = (v i, vj  , ek | vi,vj 

V and ek  vi, vj)). Let l L, then l L are distinct if and only if : V E  is 

injective. Within this framework, a graph mining problem can be viewed as a frequent 

itemset mining problem such that; let L be the set of items and X  L be an itemset. Let 

the transaction database D be a multiset of subsets of L. For itemset X, a transaction 



Use of frequent itemset mining for learning from graphs – what is gained and what is lost?  

3 

including X is an occurrence of X and the support(X) is the percentage of any itemsets Y  
X over the transaction database. The frequent item set mining determine all the itemsets X 

such that support(X)≥ minimum support given a minimum support. X is a maximal 
frequent itemset when X is included in no other frequent itemset.   

In this study, we employ the MFI (Maximal Frequent Itemset) algorithm [6], 
which uses maximal frequent itemset mining for discovering frequent sub-graphs (which 

are not necessarily connected) from graph databases. The MFI algorithm requires 
transformation of graph data into edge lists. The MAFIA algorithm [16] is used on the 

edge lists to discover the maximal frequent itemsets. Another application of itemset 

mining that we consider in this study is based on itemset mining using constraint 
programming. Similar to MFI, the edge lists of the graphs are used in the CPIM algorithm 

[18] to mine significant patterns.  
We also consider three graph mining methods, namely, GraphSig (Mining Significant 

graphs) [11], MoFa (frequent molecular fragments miner) [7], SUBDUE (interesting sub-
graphs discovery) [10].  

3 Empirical Evaluation 

In this experiment, we use eighteen datasets from the medicinal chemistry domain, 
which are publicly available [19]. The discovered sub-graphs from the graph and itemset 

mining methods are used as features for building the predictive models. The same datasets 
are used for investigating both classification and regression performance. 

Classification models are built using random forests (RF), support vector 
machines with  the RBF kernel with complexity 2 (SVM-R), and the polynomial kernel 

with complexity 2 (SVM-P), and the k-nearest neighbor (KNN) as implemented in the 

WEKA data mining toolkit [20]. We considered accuracy as the performance criterion, 
which is estimated using 10-fold cross-validation. Since the intention of the study is to 

draw conclusions of the relative performance of the descriptor sets without reference to a 
specific learning algorithm, we randomly choose one of the three learning algorithms for 

each dataset, and draw one conclusion for all descriptor sets independently of the 
algorithms. The alternative would be to apply all learning algorithms on all descriptor sets, 

and either draw one conclusion for each learning algorithm or look for the best 

combination of descriptor set and learning algorithm, something which would typically 
require a very large number of datasets in order to allow for any statistically significant 

differences to be detected.  
For regression, we have used the support vector machine with the nonlinear 

polynomial kernel with complexity 2 and the RBF kernel with complexity 2, as 
implemented in WEKA [20]. The root mean squared error (RMSE) where chosen as 

performance criterion for the regression tasks, again using 10-fold cross validation. The 
class labels are used for feature construction in MoFa, GraphSig, SUBDUE, and CP.  

Parameter optimizations of the algorithms, when required, were done by cross-validation 

on the training sets, where the optimized parameters were used in the test set.  The same 
training and test folds were used for all methods. Again, we choose one of the learning 

algorithms randomly for each dataset. 
The experiments were carried out using a HP EliteBook, with two Core2 Duo Intel 

processors 2.40GHz each, and 2.9GB main memory, running under Ubuntu 10.4. An 
upper limit of 24 hours was set for each method on each dataset. 
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3.1 Results 

Table 1 summarizes the datasets and shows the average time taken by each method on 
sub-graph discovery. In Fig. 1, the classification accuracies of the models  are shown. Due 

to the space constraints we omit including the regression models. 

Table 1. Average time taken (in seconds) by each method for sub-graph discovery  

Dataset 
Name 

#graphs 
in the 
dataset 

Average 
graph 
size  

#node 
labels 

graphSig MFI MoFa CP SUBDUE 

ace 114  42 7 292.81 0.41 11.71 1.40 2.54 
ache 111  56 7 - 0.87 - 7.16 43.54 

AI 69 24 8 1041.73 0.41 45.57 4.33 383.71 
AMPH1 130 87 5 114.63 1.01 - 11.35 27.10 
ATA 94 22 5 8.50 0.50 6.88 2.50 6.33 
bzr 163 36 8 - 1.00 285.15 4.36 6.87 

caco 100 45 8 2.37 0.70 147.57 0.75 1.37 
COMT 92 20 7 2.73 0.67 2.97 2. 72 3.33 
cox2 322 41 8 3000.03 2.00 2136.92 2.31 14.9 
dhfr 397 41 8 1135.15 2.38 22.63 4.48 8.37 

EDC 119 19 7 0.35 0.72 3.98 0.65 4.50 
gpb 66 32 8 1878.64 0.53 8.13 0.82 1.42 
HIVPR 113 45 9 1414.77 0.82 2558.54 1.44 3.41 
HIVRT 101 25 9 85.94 0.67 3.24 1.16 2.10 

HPTP 132 38 9 2573.07 0.85 192.28 0.69 1031.50 
nct 131 20 8 255.98 0.80 21.33 1.81 8.50 
therm 76 52 6 196.38 0.59 28.12 0.62 11.21 

thr 88 68 5 1944.58 0.71 - 0.59 51.51 

 

 

Fig. 1 Classification accuracies  

To evaluate the results statistically, a null hypothesis is formed stating that there is no 

significant difference between the accuracies obtained by using different feature 
construction methods. The significance of the differences of the regression errors  and the 

classification accuracies is tested by comparing the ranks (relative performance of the 
methods) using the Friedman test [21]. The Friedman test rejected the null hypothesis for 

both regression and classification experiments. Therefore, further tests were conducted to 
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identify pairs of methods for which the difference in performance is significant. The 
average ranks are used for pair-wise tests for significance, based on the Nemenyi test [21].  

In applying this criterion, a method that fails to produce a feature set is assigned the 
highest rank, which corresponds to the worst performance.  

Table 2 gives the differences of ranks for all the pair-wise tests of the regression 
models and Table 3 represents the same for classification models . The pairs corresponding 

to dark cells in the tables show the methods that are significantly different in their 
performance, i.e., the differences of ranks are larger than the Critical Difference [21] 1.44 

(a positive value corresponds to that the method in the row label outperforms the method 

in the column label and vice versa for negative values). According to Table 2 and 3, all 
significant differences involve MoFa.  

Table 2. Differences of average ranks of performance of regression models 

 

graphSig MFI MoFa CP SUBDUE 

graphSig - 
    MFI -1.14 - 

   MoFa -1.64 -0.50 - 
  CP -0.08 1.06 1.56 - 

 SUBDUE 0.25 1.39 1.89 0.33 - 

Table 3. Differences of average ranks of performance of classification models 

 graphSig MFI MoFa CP SUBDUE 

graphSig - 
    MFI -0.22 - 

   MoFa -2.22 -2.00 - 
  CP -0.06 0.17 2.17 - 

 SUBDUE 0.39 0.61 2.61 0.44 - 

 
The experiment shows that the relatively high computational cost of graph mining 

methods compared to the itemset mining approaches is not motivated by a corresponding 
gain in predictive performance. On the contrary, it can be seen that the itemset mining 

approaches significantly outperform one of the graph mining approaches. Hence, in cases 

where computational cost is important, the experiment shows that itemset mining 
approaches can be good alternatives to graph mining approaches for prediction tasks. 

What is lost when employing itemset mining compared to graph mining is the topological 
structure of graphs, i.e., the identified sub-structures cannot be easily interpreted. 

However, when predictive performance is all that matters, this loss is negligible.  

4 Concluding remarks 

Itemset mining algorithms are not as expressive as graph mining methods since they 

have less power to encode the topological structure of graphs. On the other hand, itemset 
mining algorithms are computationally less complex. In this study, we have investigated 

the effectiveness of using itemset mining compared to graph mining for graph prediction 

tasks. 
An experiment with building predictive models for classification and regression tasks 

using 18 medicinal chemistry datasets was presented. It was concluded that models built 

using features discovered by itemset mining algorithms were, despite less expressive 
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power and requiring much lower computational cost, not only competitive with the 
standard graph mining methods , but also that they even may outperform some graph 

mining methods.  

The presented experiment focused on graph data from the domain of medicinal 
chemistry. An immediate question is whether or not the conclusions from this study carry 

over to other domains as well. The study could, for example, be extended towards specific 

domains of graphs with unique node labels and compare the performances with graph 
mining methods, since unique node graphs preserve the topological structure of the graphs 

under the canonical transformation of graphs using edge lists.  
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