
Efficient Operations in Feature Terms using
Constraint Programming

Santiago Ontañón and Pedro Meseguer

IIIA-CSIC, Artificial Intelligence Research Institute
Spanish Scientific Research Council,

08193 Bellaterra (Spain)
{santi,pedro}@iiia.csic.es

Abstract. Feature Terms are a generalization of first-order terms that
have been introduced in theoretical computer science in order to for-
malize object-oriented capabilities of declarative languages, and which
have been recently received increased attention for their usefulness in
structured machine learning applications. The main obstacle with feature
terms (as well as other formal representation languages like Horn clauses
or Description Logics) is that the basic operations like subsumption have
a very high computational cost. In this paper we model subsumption as
constraint programming (CP), allowing us to solve those operations in a
more efficient way than using traditional methods.

1 Introduction

Structured machine learning (SML) [8] focuses on developing machine learning
techniques for rich representations such as feature terms [2, 7, 13], Horn clauses
[10], or description logics [6]. SML has received an increased amount of interest
in the recent years for several reasons, like allowing to handle complex data in
a natural way (as illustrated by the success of these techniques in biomedical
fields), or sophisticated forms of inference. One of the major difficulties in SML
is that basic operations in structured representations like feature terms have
a very high computational complexity. This paper focuses on feature terms,
and presents a formalization of the subsumption operation based on constraint
programming (CP), which allows also for unification and antiunification to be
implemented in a more efficient way.

Feature Terms are a generalization of first-order terms that have been intro-
duced in theoretical computer science in order to formalize object-oriented capa-
bilities of declarative languages, and which have been recently received increased
attention for their usefulness in structured machine learning applications [12, 3,
13]. The three basic operations among feature terms are subsumption, unification
and antiunification, which are essential for defining machine learning algorithms.
It is well known that those operations have a high computational cost if we allow
set-valued features in feature terms [7] (necessary to represent most structured
machine learning datasets).

!"#$%&'()

!*#+&%)

!,#+&%)

!-#./(0)

!1#2(0'(2)

!3#45/%$)

!6#/72(%2+$)

!8#+'%+.2)

+&%4)

.()

45&72)

.()

45&72)

.+/($)

'(9%/($)

Fig. 1. A simple train represented as a feature term.

Constraint programming has been shown in the past to be a powerful frame-
work that can be used for increasing the performance of relational machine
learning algorithms. For example, it is well known that θ-subsumption can be
efficiently computed using CP [11]. In this paper, we use constraint programming
to model subsumption in set-valued feature terms, and show that this results in
an implementation several orders of magnitude faster than standard approaches.

2 Preliminaries

Feature Terms. Feature terms [2, 7] are a generalization of first-order terms,
introduced in theoretical computer science to formalize object-oriented declara-
tive languages. Feature terms correspond to a different subset of first-order logics
than description logics, although with the same expressive power [1].

Feature terms are defined by its signature: Σ = 〈S,F ,≤,V〉. S is a set of sort
symbols, including the most general sort (“any”).≤ is an order relation inducing
a single inheritance hierarchy in S, where s ≤ s′ means s is more general than
or equal to s′, for any s, s′ ∈ S (”any” is more general than any s which, in turn,
is more general than ”none”). F is a set of feature symbols, and V is a set of
variable names. We define a feature term ψ as,

ψ ::= X : s [f1
.
= Ψ1, ..., fn

.
= Ψn]

where ψ points to the root variable X (that we will note as root(ψ)) of sort s;
X ∈ V, s ∈ S, fi ∈ F , and Ψi might be either another variable Y ∈ V, or a set
of variables {X1, ..., Xm}. When Ψi is a set {X1, ..., Xm}, each element in the
set must be different. An example of feature term appears in Figure 1. It is a
train (variable X1) composed of two cars (variables X2 and X3). This term has
8 variables, and one set-valued feature (indicated by a doted line): cars of X1.

To make a uniform description, constants are treated as variables of a parti-
cular sort. For each X in a term with a constant value k of sort s, we consider
that X is a regular variable of a special sort sk. For each different constant k,
we create a new sort sk of s. Then, we can forget about constants and just treat
all variables in the same way.The set of variables of a term ψ is vars(ψ), the set
of features of a variable X is features(X), and sort(X) is its sort.
Operations on Feature Terms. The basic operation between feature terms
is subsumption: whether a term is more general than (or equal to) another one.

X1

X2

X3

a

a

b

Y1

Y2

Y6

a
a

b

Y3

Y5

Y4

a
a

b

ψ1 ψ2

Fig. 2. An example where a bigger feature term subsumes a smaller feature term. In
this case ψ2 v ψ1 assuming that all variables in them have the same sort s.

Definition 1. (Subsumption) A feature term ψ1 subsumes another one ψ2 (ψ1 v
ψ2) 1 when there is a total mapping m: vars(ψ1)→ vars(ψ2) such that:

– root(ψ2) = m(root(ψ1))
– For each X ∈ vars(ψ1)

• sort(X) ≤ sort(m(X)),
• for each f ∈ features(X), where X.f = Ψ1 and m(X).f = Ψ2:
∗ ∀Y ∈ Ψ1,∃Z ∈ Ψ2|m(Y) = Z,
∗ ∀Y,Z ∈ Ψ1, Y 6= Z ⇒ m(Y) 6= m(Z)

i.e. each variable in Ψ1 is mapped in Ψ2, and different variables in Ψ1

have different mappings.

Subsumption induces a partial order among feature terms, i.e. the pair 〈L,v〉
is a poset for a given set of terms L containing the infimum ⊥ and the supremum
> with respect to the subsumption order, typically called the subsumption graph.
We can see the subsumption graph as a directed graph where vertices are feature
terms and directed edges indicate subsumption.

Since feature terms can be represented as labelled graphs, it is natural to
relate the problem of feature terms subsumption to subgraph isomorphism.
However, subsumption cannot be modeled as subgraph isomorphism by two
reasons. First, edges and nodes in feature term graphs have labels and sorts, and
second, and most important, larger feature terms can subsume smaller feature
terms while the corresponding graphs are not isomorphic. See for example the
two terms shown in Figure 2, where a term ψ2 with six variables subsumes
a term with three variables ψ1 (with the mapping m(Y1) = m(Y4) = X1,
m(Y2) = m(Y5) = X2, and m(Y3) = m(Y6) = X3).

Given the partial order introduced by subsumption, we define the two other
basic operations on feature terms: unification and antiunification. Both are
operations over the subsumption graph: antiunification finds the most specific
common “parent”; unification finds the most general common “descendant”. In
feature terms, unification and antiunification might not be unique. For space
reasons, in this paper we will only show how subsumption can be modeled

1 In description logics notation, subsumption is written in the reverse order since it is
seen as “set inclusion” of their interpretations. In machine learning, A v B means
that A is more general than B, while in description logics it has the opposite meaning.

using constraint programming. However, both antiunification and unification
be accelerated as well thanks to our model.
Constraint Satisfaction. A Constraint Satisfaction Problem (CSP) involves a
finite set of variables, each taking a value in a finite discrete domain. Subsets of
variables are related by constraints that specify permitted value tuples. Formally,

Definition 2. A CSP is a tuple (X,D,C), where X = {x1, . . . , xn} is a set of
n variables; D = {D(x1), . . . , D(xn)} is a collection of finite discrete domains,
D(xi) is the set of xi’s possible values; C is a set of constraints. Each constraint
c ∈ C is defined on the ordered set of variables var(c) (its scope). Value tuples
permitted by c are in rel(c) ⊆

∏
xj∈var(c)D(xj).

A solution is an assignement of values to variables such that all constraints
are satisfied. CSP solving is NP-complete.

3 Subsumption

It is easy to see that testing subsumption between two feature terms ψ1 and ψ2

(testing if there exists a mapping m, as defined in Section 2, to detect whether
ψ1 is more general than or equal to ψ2) can be formalized as a CSP as follows:

– CSP Variables: for each feature term variable X ∈ vars(ψ1) there is a CSP
variable x that contains its mapping m(X) in ψ2. To avoid confusion between
the two types of variables, feature term variables are written uppercase while
CSP variables are written lowercase, the same letter denotes corresponding
variables (x is the CSP variable that represents feature term variable X).2

– CSP Domains: the domain of each CSP variable is the set vars(ψ2), except
for the CSP variable of root(ψ1), whose domain is the singleton {root(ψ2)}.

– CSP Constraints: three types of constraints are posted
• Constraints on sorts: for each X ∈ vars(ψ1), sort(X) ≤ sort(x).
• Constraints on features: for each variable X ∈ vars(ψ1) and feature
f ∈ features(X), for each variable Y ∈ X.f there exists another variable
Z ∈ x.f such that y = Z.

• Constraints on difference: IfX.f = {Y1, ..., Yk}, where all Yi’s are different
by definition, the constraint all-different(y1, ...yk) must be satisfied.

Since ψ1 and ψ2 have a finite number of variables, it is direct to see that
the CSP has a finite number of CSP variables and all their domains are finite.
Constraints on sorts can be easily tested using the sort ontology O; constraints
on features and of diference are directly implemented since they just involve the
basic tests of equality and difference.

The proposed CSP model of feature term subsumption ψ1 v ψ2 is feasible.
The number n of CSP variables is exactly |vars(ψ1)|. The domain size of n− 1
CSP variables is |vars(ψ2)|, while for the remaining CSP variable is 1. Regarding
constraints, denoting by m the maximum number of features, the maximum
number of constraints required is:

2 For X we use ”feature term variable” or simply ”variable”. For x we always use
”CSP variable”.

!"!!#$

!"!#$

!"#$

#$

#!$

#!!$

#!!!$

#!!!!$

!"!!#$!"!#$!"#$ #$ #!$ #!!$ #!!!$ #!!!!$

%&'$

Fig. 3. Time required to compute subsumption using CSPs compared to a standard
approach.

– n binary constraints on sorts (one per CSP variable),
– O(n2m) binary constraints on features (number of possible pairs of variables

times the maximum number of features),
– O(nm) n-ary constraints on difference (number of variables, each having one

all-different constraint, times the maximum number of features).

In practice, n varies from a few variables in simple machine learning problems
to up to hundreds or thousands for complex biomedical datasets. Most machine
learning datasets do not have more than a few different feature labels, and thus
m usually stays low. Moreover, in practice, the actual number of constraints is
far below its maximum number as computed above.

4 Experimental Results

In order to evaluate our model, we compared the time required to compute
subsumption by a standard implementation of subsumption in feature terms [4]
with our implementation based on constraint programming. We generated 200
pairs of feature terms using the examples in two relational machine learning data
sets as the source of terms: the trains data set [9], and the predictive toxicology
data set [5].

Figure 3 shows the results of our experiments, where each dot represents
one of the 200 pairs of terms used for our evaluation. The vertical axis (in a
logarithmic scale), shows the time in seconds required to compute subsumption
by the traditional method, and the horizontal axis (also in a logarithmic scale),
shows the time in seconds required to compute subsumption using constraint
programming. Points that lay below the grey line correspond to problems where
constraint programming is faster. For example, we can see there was one problem
where a traditional approach required 4413 seconds vs 31 seconds for the CP
approach. The results show that the harder the problems, the larger the benefits,

and that the CP approach is always faster, except for very small problems (that
have little practical impact).

5 Conclusions

A key obstacle when applying relational machine learning techniques to complex
domains is that the basic operations like subsumption have a very high computa-
tional cost. In this paper we presented a method for assessing subsumption in
set-valued feature terms using constraint programming (CP), allowing us to solve
those operations in a more efficient way than using traditional methods. As part
of our ongoing work we are analyzing the effect of our constraint programming
model of subsumption in unification and antiunification of feature terms.

References

[1] Aı̈t-Kaci, H.: Description logic vs. order-sorted feature logic. In: Description Logics
(2007)

[2] Aı̈t-Kaci, H., Podelski, A.: Towards a meaning of LIFE. Tech. Rep. 11, Digital
Research Laboratory (1992)

[3] Aı̈t-Kaci, H., Sasaki, Y.: An axiomatic approach to feature term generalization.
In: Proceedings of the 12th European Conference on Machine Learning (EMCL
’01). Lecture Notes in Computer Science, vol. 2167, pp. 1–12. Springer-Verlag,
London, UK (2001)

[4] Arcos, J.L.: The NOOS representation language. Ph.D. thesis, Universitat
Politècnica de Catalunya (1997)

[5] Armengol, E., Plaza, E.: Lazy learning for predictive toxicology based on a chem-
ical ontology. In: Dubitzky, W., Azuaje, F. (eds.) Artificial Intelligence Methods
and Tools for Systems Biology, vol. 5, pp. 1–18. Springer-Verlag (2005)

[6] Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press (2003)

[7] Carpenter, B.: The Logic of Typed Feature Structures, Cambridge Tracts in The-
oretical Computer Science, vol. 32. Cambridge University Press (1992)

[8] Dietterich, T., Domingos, P., Getoor, L., Muggleton, S., Tadepalli, P.: Structured
machine learning: the next ten years. Machine Learning pp. 3–23 (2008)

[9] Larson, J., Michalski, R.S.: Inductive inference of vl decision rules. SIGART Bull.
(63), 38–44 (1977)

[10] Lavrač, N., Džeroski, S.: Inductive Logic Programming. Techniques and Applica-
tions. Ellis Horwood (1994)

[11] Maloberti, J., Sebag, M.: Theta-subsumption in a constraint satisfaction perspec-
tive. In: Proceedings of the 11th International Conference on Inductive Logic
Programming. pp. 164–178. ILP ’01, Springer-Verlag, London, UK (2001)

[12] Ontañón, S., Plaza, E.: On similarity measures based on a refinement lattice.
In: Wilson, D., McGinty, L. (eds.) In ICCBR-2009. p. to appear. Springer-Verlag
(2009)

[13] Plaza, E.: Cases as terms: A feature term approach to the structured representa-
tion of cases. In: Veloso, M., Aamodt, A. (eds.) Case-Based Reasoning, ICCBR-95,
pp. 265–276. No. 1010 in Lecture Notes in Artificial Intelligence, Springer-Verlag
(1995)

[14] Plotkin, G.D.: A note on inductive generalization. In: Machine Intelligence. No. 5
(1970)

