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Abstract. As the ’Web of Linked Data’ vision of the Semantic Web
is coming true, the ’explosion’ of Linked Data provides more than suffi-
cient data for Description Logic learning algorithms in terms of quantity.
However, noises arise as an inevitable issue to the effectiveness of these
algorithms. To cope with noises in Linked Data, we propose to learn
ALC concept definitions from Linked Data by Markov logic. In this pa-
per, we describe our approach and report the evaluations using a small
illustrative data set, and four larger data sets. Experiment results show
that our approach performs well on noisy data, and is applicable for
learning ALC concept definitions.

1 Introduction

As the ’Web of Linked Data’ vision of the Semantic Web is coming true, the size
of Linked Data 1 kept growing over last years. According to the report of the
year 2009 [2], there have been over 6 billion RDF triples, and over 148 million
links in Linked Data. They provide more than sufficient data for Description
Logic learning algorithms in terms of quantity.

Although the RDF triples can provide plenty of examples for learning algo-
rithms, as argued by Auer and Lehmann [1], many data sets on the Linked Data
lack rich knowledge representation and contain noises. Moreover, in [3] d’Amato
et al. proposed the problem of handling the uncertainties on the Web. Learning
from Linked Data is both worth-investigating and challenging.

Several approaches have been proposed for learning from Linked Data. In [12],
Völker and Niepert propose a statistical approach, to be specific, association rule
mining, for learning OWL 2 EL from Linked Data. Lehmann J. et al. have done a
series of work on learning description logics, which have been implemented in DLs
learning tool DL-Learner. DL-Learner includes four class description learning
algorithms, namely CELOE, random guesser learning algorithm, ISLE, brute
force learning algorithm. These algorithms select class expressions according
to heuristics [7]. AutoSPARQL is a most recent work, which makes use of the
individual assertions in the ABox, and is able to learn description for individuals
[8]. However, they seldom focus on handling noises in Linked Data.

1 The Linked Data project aims to expose, share and connect related data from diverse
sources on the Semantic Web, based on URIs, HTTP and RDF.
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Hogan et al. analyzed the types of noises exist in the Linked Data [6]. We
are particularly interested in handling two types of noises: incompleteness and
error. Incompleteness means that concept assertions or the relationships between
named individuals are actually true but missed, and error means that the RDF
triples are not correct. Take a family ontology for example. The declaration of
Heinz is a father and Heinz is a male are existed in the RDF triples, then Heinz
should have a child, however it is not declared in the ontology. This is an example
of incompleteness. On the contrary, if we know Anna has a child, and she is a
female, Anna should not be a father, but in the ontology Anna is incorrectly
declared to be a father. This illustrates the error case.

We propose to learn ALC axioms inductively from Linked Data based on Sta-
tistical Relational Learning (SRL) models, to be specific, Markov logic [11]. SRL
is an emerging area of machine learning, and it attempts to represent, reason,
and learn in domains with complex relational and rich probabilistic structure
[5]. As a combination of first-order logic and Markov network, Markov logic is
able to handle Description Logic ALC in terms of expressing power, which is
subsumed by first-order logic [4]. Markov logic soften the hard constraints made
by first-order KB by introducing weights to be associated with formulas indi-
cating the strongness of the constraints. Using Markov logic, two challenges of
learning from Linked Data can be easily handled: 1) Linked Data are highly
structured due to the relations between entities and the underlying ontology. 2)
Linked Data contains noises, here, as described above, we refer particularly to
incompleteness and error.

2 Learning from Linked Data

Similar to the SEQUENTIAL-COVERING algorithm, the ALC learning algo-
rithm contains a loop. In the loop, two operations are conducted. Firstly, the
algorithm generates candidates with ALC constructors according to the current
concept (c.f. Sect. 2.1), named oldconcept . Secondly, according to a function
which selects the ’best’ one from the candidates according to the performance
measure (c.f. Sect. 2.2). The loop breaks when the performance of the new can-
didate is not better than the previous one.

Algorithm 1: Learning Algorithm
input : target concept T , KB
output: concept C satisfying T ≡ C

1 current ← >;
2 do
3 oldconcept ← current;
4 candidates ← GenerateCandidates(T , oldconcept);
5 current ← BestWeightConcept(T , KB,candidates);
6 while performance(oldconcept)<performance(current);
7 return current;
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2.1 Generating Candidate Specializations

We use the ALC downward refinement operator proposed by Lehmann J. [9]
to generate candidate specializations. Refinement operator is a mapping S 7→
2S on a quasi-ordered space S. Subsumption is a quasi-ordering relation. The
learning algorithm conducts a general to specific search over the hypotheses
space. According to our observations, refinement operator is particularly suitable
for generating candidate specializations because it is well-founded, and several
good properties of it ensure the learning process will return the result if there is.

The candidates are generated by an iterative procedure, which starts from
a base set B. B includes most general atomic concepts, negated most specific
atomic concepts, {∃r.>|r is an atomic role}. The details of the refinement oper-
ator can be found from Table 1.

Table 1. Downward refinement operator ρ↓(C)

if C is ρ↓(C)

⊥ ∅
> {C1 t . . . t Cn|Ci ∈ B(1 ≤ i ≤ n)}

A(A ∈ AC) {A′|A′ ∈ sh↓(A)} ∪ {A uD|D ∈ ρ′↓(>)}
¬A(A ∈ AC) {¬A′|A′ ∈ sh↑(A)} ∪ {¬A uD|D ∈ ρ′↓(>)}

∃r.D {∃r.E|E ∈ ρ′↓(D)} ∪ {∃r.D u E|E ∈ ρ′↓(>)}

∀r.D {∀r.E|E ∈ ρ′↓(D)} ∪ {∀r.D u E|E ∈ ρ′↓(>)}
∪{∀r.⊥|D = A ∈ AC and sh↓(A) = ∅}

C1 u . . . u Cn

(n ≥ 2)
{C1 u . . . u Ci−1 uD u Ci+1 u . . . u Cn|
D ∈ ρ′↓(Ci), 1 ≤ i ≤ n}

C1 t . . . t Cn

(n ≥ 2)

{C1 t . . . t Ci−1 tD t Ci+1 t . . . t Cn|
D ∈ ρ′↓(Ci), 1 ≤ i ≤ n}
∪{(C1 t . . . t Cn) uD|D ∈ ρ′↓(>)}

2.2 Guiding the Search

At each step, the candidate concept descriptions for Target are assumed to be
uncertain, and they construct a Markov logic network (MLN) together with
their weights {(di, wi)}. Given the RDF triples in Linked Data, the MLN can
be instantiated to be a Markov network ML,C , in which each binary node is
a grounding of a predicate and each feature fi,j is a grounding of one of the
concept descriptions. ML,C therefore encodes the joint probability distribution
P (X = x) = 1

Z exp (
∑

i wini), where ni =
∑

j 1{fi,j is true}. In order to make
both inferencing and learning tractable, this joint probability distribution is
always approximated by pseudo-log-likelihood:

logP ∗
w(X = x) =

n∑
l=1

logPw(Xl = xl|MBx(Xl)) (1)
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After taking derivative of (1), we get

∂

∂wi
logP ∗

w(X = x) =

n∑
l=1

[ni(x)− Pw(Xl = 0|MBx(Xl))ni(x[Xl=0])

−Pw(Xl = 1|MBx(Xl))ni(x[Xl=1])]

(2)

In MLN, the weight represents the relative strength or importance of the
class description (rule) [10]. The higher the weight, the greater the difference in
log probability between a world that satisfies the concept description and the
one that does not [4]. At each step, the concept description with the highest
weight is selected. To select the most promising candidate from the candidates
generated at each step, the weight vector is learned by L-BFGS algorithm, a
quasi-Newton method suitable for large-scale optimization. Inasmuch as the joint
probability distribution is a good indicator of the performance of the selected
concept description, the iteration stops when the pseudo-log-likelihood stops to
increase when more specific description is selected.

3 Experiments

We adopt the measures frequently used in information retrieval domain for the
evaluations, namely precision, recall and F1-score. The experiments are con-
ducted on two types of data sets. With the illustrative data sets (which are
smaller compared to the other type), we focus on analyzing the capability of the
approach on handling noises. As an illustrative example, we choose a small data
set from the examples of DL-Learner2, and do small modifications on it to show
the noisy cases, which are difficult to be illustrated on large data sets. As for
the real-world ontology, we use four ontologies, named Semantic Bible ontology,
Adhesome3 ontology, financial ontology (obtained from DL-Learner), and SC4

ontology.

3.1 Results

The statistics of the data sets are shown in Table 2.

Learn Definitions To show the performance on noisy cases, we modify the on-
tology and add two positive examples father(anna) and father(heinz) separately
to correspond to error and incompleteness cases, and build two ontologies named
family_error and family_incomplete 5. Using DL-Learner GUI (version 2010-
08-07) with CELOE algorithm under default settings for class learning problem,
the concept description for father can be correctly learned from family.owl to be
2 http://aksw.org/Projects/DLLearner
3 http://www.sbcny.org/datasets/adhesome.owl
4 http://www.mindswap.org/ontologies/SC.owl
5 http://research.aturstudio.com/family_noisy/
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Table 2. Statistics of the data sets for evaluation. The statistics include counts for
concept, instance, object property, inclusion axiom, and the DL expressivity of the
ontology.

# concept # inst # object # inclusion # DL expressivity0 inst >0 inst property axiom
Semantic Bible 1 49 724 29 51 SHOIN (D)

Adhesome 60 22 3032 66 216 ALCHN (D)
SC 1 29 3542 8 10 ALH+ (D)

financial 12 49 17941 16 55 ALCOF

maleu∃hasChild.Thing, but from family_error.owl and family_incomplete.owl
the concept description cannot be learned correctly. However, our learner is able
to learn correct concept definition for concept father from all these ontologies.

Learn inclusions The evaluation results are shown in Table 3. We use positive
examples for target concept to learn inclusions. On Adhesome, the recall is only
0.1852, which can be explained from two views: on the one hand, Adhesome
ontology contains more concepts with zero instances, thus data are not sufficient
for the learner to go. On the other hand, the Adhesome ontology is expressive
and contains number restrictions, which cannot be expressed by ALC. Since
SC ontology contain large amount of instances compared with the counts of
concepts, our learner tend to select restrictions prior to atomic concepts, which
have lead to a very low precision.

Table 3. Learning results

data sets precision recall F1-score
Adhesome 0.8333 0.1852 0.3030

Semantic Bible 0.8958 0.9302 0.9127
SC 0.2121 0.7000 0.3256

financial 0.7895 0.5455 0.6452

4 Conclusion and Future Works

To handle the noises generally exist in Semantic Web data, to be specific, Linked
Data, we propose a naive but simple approach for learning Description Logic
ALC inductively from noisy data by Markov logic. Our method conducts a
general-to-specific search, which generates progressively more specific concepts
until a sufficiently ’accurate’ axiom is found. During the candidate selecting pro-
cess, we transform the selection problem into finding the candidate with the
highest weight, which can be viewed as an indicator of the degree of consistency
between the candidates and the facts in the knowledge base. Compared to other
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works of learning description logics, our approach is more insensitive to noises,
thus can handle noisy cases quite well. We evaluate the approach on an illus-
trative data set. The result shows that our approach is able to work well under
noises. Furthermore experiments on four real-world data sets are also conducted,
and results demonstrate the effectiveness of our method.

Since this is an exploratory work on adopting statistical relational learning
approaches to Description Logic learning problems, in-depth studies are still in
need. We find the following issues worth investigating:

– In practice, not all examples are needed by the learning algorithms. To im-
prove efficiency without losing accuracy, sampling methods are worth to be
explored and will be used by our algorithm in the future.

– Semantic Web makes open world assumption, which means we are unable to
know the truth value of a proposition if it is not inferred to be true. However,
inductive learning algorithms, like our algorithm, always make closed world
assumption. This issue will also be studied in the future.
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