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Abstract. In our previous work we have introduced EDA-ILP, an Inductive 

Logic Programming (ILP) system based on Estimation Distribution Algorithm 

(EDA). EDA-ILP showed to be superior when compared to GA-ILP, a variation 
of EDA-ILP created replacing the EDA by a “conventional” Genetic Algorithm. 

Additionally, EDA-ILP proved to be very competitive when compared to the 

state of the art ILP system Aleph. This work presents REDA-ILP, an extension 

of EDA-ILP that employs the well-known Reduce algorithm in order to 

considerably reduce the search space. Preliminary results show that REDA-ILP, 

when compared to EDA-ILP, achieves equivalent accuracies results while 

considerably reduces the search time in order to find simpler theories. 

Keywords: Inductive Logic Programming, Estimation Distribution Algorithm, 

Reduce Algorithm.  

1   Introduction 

Estimation of Distribution Algorithms (EDAs) [3] are algorithms based on the explicit 

use of probability distributions. These algorithms completely (or partially) replace the 

traditional variation operators of the Genetic Algorithms (GAs) [6], such as mutation 

and crossover, by building a probabilistic model of promising solutions and sampling 

the built model to generate new candidate solutions.  

 In our previous work [1], we have introduced EDA-ILP, an Inductive Logic 

Programming (ILP) [2] system based on EDA. Briefly, EDA-ILP searches for a 

whole theory [18] instead of single clauses, but limits its search to the clauses whose 

bodies are subsets of the literals in the bottom clauses. EDA-ILP uses Bayesian 

Networks (BNs) [4] whose structures captures the dependences of the literals in the 

bottom clauses and applies PBIL’s [5] update rule in order to guide the search 

towards promising areas in the search space. To evaluate EDA-ILP, we also built GA-

ILP replacing the EDA in EDA-ILP by a “conventional” GA. EDA-ILP showed to be 

superior when compared to the GA-ILP and proved to be very competitive when 

evaluated against the Aleph [8] in two classical datasets.  

 In the present work, we introduce an extension of EDA-ILP, the REDA-ILP, 

which, in short, uses the Reduce [7] algorithm to considerably reduce the search 

space. REDA-ILP was inspired by the QG/GA (Quick Generalization/Genetic 

Algorithm) presented in [10]. In such work, the QG algorithm rapidly builds 

consistent clauses using the Reduce algorithm while a GA is used to evolve the 

clauses initially found by the QG. QG/GA was plugged into the Progol to create 

several variations of such system. The Progol variation that specifically motivated this 



work is the one that used both the GA and the QG. In this version of Progol, called 

here by Progol-QG/GA, a GA was used in substitution to the standard A* while the 

QG was used to seed the initial population of the GA.  Despite of being motivated by 

the cited variation of Progol, REDA-ILP holds some fundamentals differences when 

compared to the Progol-QG/GA. These differences are presented bellow.  

i) REDA-ILP searches for theories whose literals are subsets of the reduced 

clauses (clauses that undergo to the Reduce algorithm). In Progol-QG/GA, 

the search for clauses is done in the complete bottom clauses, i.e., the 

Reduce algorithm is just applied to seed the initial population of the GA, but 

its search considers the entire search space defined by the bottom clause.  

ii) Progol-QG/GA (and all other variations created using only QG or GA) use 

the classical covering procedure in order to build a theory, this way, all the 

variations of the Progol system search for one clause at a time while the 

REDA-ILP, following EDA-ILP, searches for a whole theory.  

iii) The Progol-QG/GA uses a canonical Genetic Algorithm to perform its search 

while the REDA-ILP uses an Estimation Distribution Algorithm.  

 In order to evaluate REDA-ILP, it was compared to the EDA-ILP and to the 

Aleph. In relation to EDA-ILP, preliminary results points that REDA-ILP achieves 

equivalent accuracies results while considerably reduces the search time in order to 

find simpler theories. In relation to Aleph, REDA-ILP proved to be very competitive. 

 This paper is organized as follows. Section 2 briefly reviews the QG/GA. 

Section 3 presents the REDA-ILP and relates it to our previous work. Preliminary 

experiments are presented in section 4. Finally, the section 5 concludes and discusses 

further works.  

2   Related Works 

2.1   The QG\GA  

Motivated by the low average density of consistent clauses in relation to inconsistent 

ones that are evaluated during the Progol’s [11] search in several datasets, the work 

[10] introduced the stochastic search called Quick Generalization/Genetic Algorithm 

and plugged it to the ILP system Progol. The QG algorithm has the objective to 

rapidly build consistent clauses (that are typically found in the fringe of the 

refinement graph) without needing to explore this graph in detail.  Briefly, the QG 

algorithm receives a bottom clause, randomly permutes its literals to build a permuted 

head-connected bottom clause, and then applies the Reduce [7] algorithm to this 

permuted clause. As the output, the QG algorithm returns a reduced consistent clause 

built from the input bottom clause.  

 First, the work evaluates the Progol standard search (that is performed by the 

A*) against the Progol using the QG, and founds that the configuration Progol-QG 

obtains solutions with the same or similar accuracies in less time. Latter, the work 

considers two variations of Progol using a GA instead of the A*.  In the first 

variation, called here by Progol-GA, the initial population of the GA is randomly 

generated, while in the second variation of the system, called here by Progol-QG/GA, 

the initial population of the GA is seeded using the clauses returned by the QG 

algorithm. In order to evaluate Progol-GA and Progol-QG/GA, two batches of 

experiments were made. First, Progol-GA was compared to Progol-A* and to Progol-

QG, latter, Progol-QG/GA was compared to Progol-A*, Progol-QG, and Progol-AG. 



The first batch of experiments was performed using standard datasets, while the 

second batch was performed both in standard datasets as well on artificial generated 

phase transitions data. In the first batch of tests made, the QG/GA achieved higher 

accuracy results (but not statistically significant) using fewer evaluated clauses in 

relation to Progol-A* and Progol-GA. On the second batch of experiments, the 

Progol-QG/GA clearly tends to overcome the other variations of the system as the 

size of the concepts to be learned increase. 

3   The REDA-ILP System 

As the search performed by REDA-ILP is done for a whole theory instead of a single 

clause, each individual in the population codifies a set of clauses (a theory). REDA-

ILP adopts the bottom clauses as one of its search bias, i.e., REDA-ILP searches for 

clauses whose literals are subsets of the literals in a given bottom clause. To do so, 

REDA-ILP uses the Aleph system to generate the bottom clauses and uses a binary 

string to represent its individuals. A binary string is constructed over the bottom 

clause and both have the same size, i.e., the binary string has as many bits as the 

number of literals of the bottom clause. During the search of the REDA-ILP, a bit 

with value 1 at the ith position of the binary string represents that the ith literal of the 

bottom clause is being used, while 0-valued ith position represents that the ith literal 

of the bottom clause is not used. This form of encoding is found in [9] and [10]. The 

next example illustrates this form of codification. 

          Example 1: Assume that the h(A,B) :- p(A,C), q(B,C), r(C,D) was the 

bottom clause generated. Fig. 1 shows a possible clause generated by the system. 

BC h(A,B) :- p(A,C) q(B,C) r(C,D) 

S1_bin 1 0 0 1 

C1 h(A,B) :-   r(C,D) 

Fig. 1. A possible clause generated by the EDA-ILP system 

From fig 1 one can see that the binary mapping can be easily done by looking at the 

positions of the binary string and its corresponding literals in the bottom clause. Thus, 

S1_bin (1001) transformed into clause will result in h(A,B) :- r(C,D). 

 The probabilistic model used by REDA-ILP was inspired by [12]; however, 

the current version of REDA-ILP uses BNs as the only search mechanism (differently 

from [12], which uses a couple of BNs to generate a clause that will be used as a seed 

to a local search procedure -- for more details, see [1]). As occurred in [12], the BNs 

are responsible for storing the dependencies between the literals of a bottom clause. 

During the execution cycle of REDA-ILP, these Bayesian Networks are sampled to 

generate binary strings that subsequently will be mapped into clauses. As in [12], the 

structures of Bayesian networks in REDA-ILP do not change during the course of the 

search; however, the Conditional Probabilities Tables (CPTs) are updated in order to 

guide the Bayesian networks towards promising areas of the search space. REDA-ILP 

updates its CPTs using PBIL’s update rule. Briefly, PBIL’s update rule selects the 

best individual from the current population and updates its probabilistic model in 

order to increase the probability to generate this best individual in the next generation. 

In the current version of the system, the number of the clauses in a theory is provided 

by the user, thus, given that the user has set the number of the clauses in a theory to k, 

the REDA-ILP will construct k bottom clauses and codifies each clause into a binary 

string. In addition, for each bottom clause constructed, REDA-ILP also builds a BN. 

Next, we present and discuss the main execution cycle of REDA-ILP. 



 

Input parameters:  

(k): number of clauses in theories; (p1, p2, p3): the initial probabilities 
for the CPTs; (λ): learning rate for PBIL’s update rule; (num_Pop): number 
of individuals in the population; (num_Gen): number of generations. 

REDA-ILP-Begin: 

1 – Create k bottom clauses using k positive examples randomly chosen.  

2 – Apply the Reduce algorithm to each bottom clause created to obtain k   

    reduced bottom clauses. 

3 – Create k Bayesians networks (one for each reduced bottom clause); 

4 - Repeat (num_Gen) times 

    5 - Generate num_pop individuals (theories) by sampling all k  

    Bayesians networks num_Pop times; 

    6 - Evaluates all num_pop individuals with the fitness function; 

    7 - Select the fittest individual in the population and updates the  

    CPTs of all the k Bayesian networks using the selected individual; 

    End-Repeat. 

8 - Generate num_pop individuals and returns the fittest one. 

End-REDA-ILP. 

 Step 1 creates k bottom clauses by randomly selecting k positive examples.  

In step 2, REDA-ILP applies the Reduce algorithm to each bottom clause generated in 

order to obtain k reduced bottom clauses. Step 3 build k BNs (one for each reduced 

bottom clause). As said, these BN captures the dependencies between the literals of 

the bottom clauses. Step 5 generates num_pop individuals by sampling all the BNs 

num_pop times. This step is performed as follows: to generate one individual 

containing k clauses, the first BN is sampled (resulting in the first clause of the 

individual), next, the second BN is sampled (resulting in the second clause of the 

individual) and so on, until sampling the kth BN to generate the kth clause in the 

individual. To generate a population with num_pop individuals, this whole process is 

repeated num_pop times.  The step 6 evaluates the population with a predefined 

fitness function (accuracy, for example).  The step 7 updates all the BNs. To update 

each one of the k BNs, all the k clauses from the best individual are sequentially used, 

thus, the first clause in the best individual is used to update the first BN, the second 

clause of the best individual is used to update the second BN, and so on, until using 

the kth clause in the best individual to update the kth BN. Step 8 generates a new 

population and returns the fittest individual as the learned theory.  

 The fundamental difference between REDA-ILP and EDA-ILP is 

highlighted as the step 2. While EDA-ILP directly generates k BNs from the k bottom 

clauses created, the REDA-ILP applies the Reduce algorithm to each one of the k 

bottom clauses created, before constructing its BNs. This way, one can see that the 

search space of the REDA-ILP is smaller when compared to the EDA-ILP, since the 

reduced bottom clauses have fewer literals when compared to the bottom clauses that 

were not reduced.  

4   Preliminary Experiments 

Materials and Methods: In order to empirically evaluate REDA-ILP, we used two 

datasets, namely, carcinogenesis (Carc) [13] and alzheimers-amine (Alz) [14], since 

they are good examples of practical ILP problems. All the systems were evaluated in 

relation to the accuracy (using the corrected two-tailed paired t-test [15] with p< 



0.05), and the complexity (number of clauses) of the induced theory; in addition, the 

systems were compared in relation to its execution times (measured in seconds). All 

experiments were performed using stratified 10-fold cross-validation and the results 

presented for each system are the average (on the test set) of the results in these 10 

folds1.We used stratified 10-fold internal cross-validation to set the parameters of the 

EDA-ILP. For REDA-ILP, since its search space is considerably reduced in relation 

to EDA-ILP, we simply reduced the generation number by half and doubled the 

learning rate of the PBIL’s update rule2. The configurations of EDA-ILP and REDA-

ILP are presented in table 1. Both EDA-based systems used accuracy as the fitness 

function. For Aleph, the configuration was taken from [16] and [17] since these works 

suggest good values of parameters for Aleph3. All the experiments were performed in 

a Dual Core Pentium 2.0 GHz with 2.0 GB of RAM. All systems used Yap latest 

version (6.2.1). 
Table 1. Configuration of EDA-ILP and REDA-ILP 

- Alzheimers-amine Carcinogenesis 

 EDA-ILP REDA-ILP EDA-ILP REDA-ILP 

Generation Number 500 250 100 50 

Population Size 20 20 10 10 

Number of Clauses in Theories 3 3 1 1 

Learning rate (λ) 0.005 0.01 0.01 0.02 

p1\p2\p3 0.5\0.5\0.1 0.5\0.5\0.1 0.1\0.1\0.1 0.1\0.1\0.1 

Results and Discussion: Table 2 shows the obtained results, where (Acc) is the 

accuracy achieved,  (#Cls) is the number of clauses in the theory, (#Lit) is the number 

of literals in the theory, and (T) is the execution time taken to execute the systems. 

Table 2. Results for Aleph, EDA-ILP, and REDA-ILP 
 Aleph EDA-ILP REDA-ILP 

 Acc. #Cls. #Lit. T(s). Acc. #Cls. #Lit. T(s). Acc. #Cls. #Lit. T(s). 

Alz. 69.7 7 3.4 56.6 73.5 3 7.2 45.7 71.8 3 4.2 16.6 

Carc. 62.7 4.7 1.8 5.8 68.5 3 2.3 14 67.0 3 1.45 5.36 

 In our previous work [1] we concluded that the EDA-ILP is very competitive 

when compared to Aleph. In fact, for the both datasets, EDA-ILP obtained statistical 

significant accuracies results. The number of clauses in the theories obtained by EDA-

ILP is smaller when compared to the Aleph, but the number of literals in EDA-ILP’s 

theories is higher. In relation to execution time, EDA-ILP needs a little less time in 

Alz, but needs much more time in the Carc dataset. The accuracies obtained by 

REDA-ILP are equivalent to the accuracies of EDA-ILP for both datasets tested. 

Note, however, that REDA-ILP obtains simpler theories in both datasets. For Alz, the 

number of literals was reduced by 41% and for Carc by 37%. The execution time of 

REDA-ILP is also better when compared to the EDA-ILP. For Alz, the execution time 

reduced 63%, and for Carc, the reduction in time achieved 62%. By the presented 

results, one can see that REDA-ILP is more competitive with Aleph than EDA-ILP.  

                                                           
1 Due to the stochastic nature of EDA-ILP, and REDA-ILP, the experimental results for each one of the 10 folds were 

obtained using the average of 10 runs in each fold.  
2 Preliminary tests showed that the results obtained by the EDA-ILP are considerably worse if its parameters are set as in 

REDA-ILP.  
3 Use the cross-validation procedure in order to set Aleph’s parameters is hard task due to the large number of parameters 

of this system, this way, we opted to use the parameters suggested in these works, since the systems achieve good results 

when set as suggested. 



5   Conclusions and Future Work 

This work introduced REDA-ILP, an extension of EDA-ILP that uses Reduce algorithm to 

reduce the search space. REDA-ILP applies the Reduce algorithm in the bottom clauses 

generated then these reduced clauses are used to construct the Bayesian Networks that will 
perform the search using only the literals present in these reduced clauses. Preliminary results 

show that REDA-ILP, when compared to EDA-ILP, achieves equivalent accuracies results 

while considerably reduces the search time in order to find simpler theories. In addition, 

REDA-ILP proved to be very competitive when compared to Aleph.  

 Considering future works, one natural way to follow is to let the system use other 

literals of the bottom clause (not only those presented in the reduced bottom clause).  In this 

respect, our actual line of research is to allow the literals that are in the reduced bottom clause 

to appear in the searched clauses with higher probabilities than the other literals of the bottom 

clause. Also, we would like to evaluate REDA-ILP against other systems, such as QG/GA, for 

example. 

References 

1.  Pitangui, C., Zaverucha, G., Inductive Logic Programming Through Estimation Distribution Algorithm. 

To appear in proceedings of IEEE Congress of Evolutionary Computation (CEC-2011). 

2.  Muggleton, S., De Raedt, L. (1994); “Inductive Logic Programming: Theory and Methods”, Journal of 

Logic Programming, v. 19, n. 20. 

3.  Mühlenbein, H., & Paaß, G. (1996); From recombination of genes to the estimation of distributions I. 

Binary parameters. Parallel Problem Solving from Nature, eds.  Voigt, H.-M and Ebeling, W. and 

Rechenberg, I. and Schwefel, H.-P., LNCS 1141, Springer:Berlin, (pp. 178-187). 
4.  Pearl. J. (1988); Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan 

Kaufmann Publishers Inc., San Francisco, CA, USA. 

5.  Baluja, S. (1994); Population-based incremental learning: A method for integrating genetic search based 
function optimization and competitive learning. Pittsburgh, PA: Carnegie Mellon University (Technical 

Report: CMU-CS-94-163). 
6.   Holland, J. (1975); Adaptation in natural and artificial systems. MIT Press, Cambridge. 

7.  Muggleton, S. H., & Feng, C. (1990). Efficient induction of logic programs. In Proceedings of the first 

conference on algorithmic learning theory (pp. 368–381). Tokyo: Ohmsha.  
8. Srinivasan. A, The Aleph Manual, last access: 07/05/2011………………………………. 

http://www.comlab.ox.ac.uk/activities/machinelearning/Aleph/ 

9. Alphonse, E., Rouveirol, C., (2000), Lazy propositionalisation for Relational Learning, 14th European 
Conference on Artificial Intelligence 2000 (ECAI’00), pages 256-260, IOS Press. 

10. Muggleton, S.,Tamaddoni-Nezhad A. (2006); QG/GA: A stochastic search approach for Progol. Machine 

Learning, 70(2-3):123-133, 2007. DOI: 10.1007/s10994-007-5029-3.  

11. Muggleton, S. (1995); Inverse entailment and Progol. New Generation Computing, Special issue on 

Inductive Logic Progra mming, 13(3-4):245–286. 

12. Oliphant, L., & Shavlik, J. (2007); Using Bayesian Networks to Direct Stochastic Search in Inductive 

Logic Programming. Proceedings of the 17th International Conference on Inductive Logic  Programming, 

pages 191-199. 

13. Srinivasan, A., King R.D. S.H. Muggleton S, and  Sternberg M.. (1997); Carcinogenesis  predictions using 
ILP. In Proceedings of the Seventh International Workshop on ILP, pages 273–287. Springer-Verlag, 

Berlin,  LNAI 1297. 

14. King R.D., Srinivasan A., and Sternberg M.J.E.. (1995) Relating chemical activity to structure: an 

examination of ILP successes. New Gen. Comp., 13:411–433, 1995. 

15. Nadeau C., Bengio Y., (2003) “Inference for the Generalization Error”, Machine Learning 52(3) pp. 239-
281. 

16. Huynh T., Mooney R. (2008); Discriminative Structure and Parameter Learning for Markov Logic 

Networks. In Proceedings of the 25th International Conference on Machine Learning (ICML-2008), 
Helsinki, Finland, pages 416-423. 

17. Muggleton, S., Santos, J., Tamaddoni-Nezhad, A. TopLog: ILP using a logic program declarative bias. 

In Proceedings of the International Conference on Logic Programming 2008, LNCS 5366, pages 687-
692. Springer-Verlag, 2010. 

18. Bratko, I., (1999), Refining complete hypotheses in ILP. Proc. ILP’99 (9th Int. Workshop on Inductive 
logic programming), Bled, Slovenia, June 1999 (Lecture notes in computer science, Lecture notes in 

artificial inteligence, 1634). Berlin: Springer, 1999, pp. 44-55.  


