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Abstract. In this paper we demonstrate that Abductive ILP can gen-
erate plausible and testable food webs from ecological data. In this ap-
proach, unlike previous applications, the abductive predicate ‘eats’ is
entirely undefined before the start of the learning. We also explore a new
approach for estimating probabilities for hypothetical ‘eats’ facts based
on their frequency of occurrence when randomly sampling the hypoth-
esis space. The results of cross-validation tests suggest that the trophic
networks with probabilities have higher predictive accuracies compared
to the networks without probabilities. The proposed trophic networks
have been examined by domain experts and comparison with the litera-
ture shows that many of the links are corroborated by the literature. In
particular, links ascribed with high probability are shown to correspond
well with those having multiple references in the literature. In some cases
novel high probability links are suggested, which could be tested.

1 Introduction

Machine Learning has the potential to address many challenging problems in
ecological sciences [4]. Discovery of trophic links (food chains) which describe
the flow of energy/biomass between species is one of these problems. Networks
of trophic links (food webs) are important for explaining ecosystem structure
and dynamics [2]. However, relatively few ecosystems have been studied through
detailed food webs because finding out the predation relationships between the
many hundreds of species in an ecosystem is difficult and expensive. Hence, any
technique which can automate the discovery of trophic links from ecological data
is highly desirable. Similar problems of network construction have been tackled
in other complex systems, such as metabolic networks (e.g. [8]). In this paper
we demonstrate that Abductive ILP can generate plausible and testable food
webs from ecological data. In this approach the abductive predicate ‘eats’ is
entirely undefined before the start of the learning process. This contrasts with
previous applications of Abductive ILP where partial, non-empty, definitions
exist and the gaps are filled by abduced hypotheses. In this paper we also explore
a new approach for estimating probabilities for hypothetical ‘eats’ facts based on



their frequency of occurrence when random permutations of the training data
(and hence different seeds for defining the hypothesis space) are considered.
We empirically evaluate the hypothetical trophic networks using leave-one-out
cross-validation tests on the observable data. The results of cross-validation tests
for the networks with and without probabilities are presented. The proposed
trophic networks have been also examined by domain experts and the results of
comparison with the literature are presented.

2 Ecological data

The data set was sampled from 257 fields across the UK in the Farm Scale
Evaluations (FSE) of GM, herbicide tolerant (GMHT) crops. This national-
scale experiment evaluated the change in weed plants and invertebrates between
the current, conventional herbicide management of spring-sown Maize, Beet and
Oilseed Rape and winter-sown Oilseed Rape, and the herbicide management of
GMHT varieties of the same crops using a split-field design. We use data from
the Vortis suction sampling protocol for epigeal invertebrates [6, 1] to calculate
a treatment effect ratio. The counts from each conventional and GMHT half-
field pair were converted to multiplicative treatment ratio, R, and as in [6,1]
treatment ratio values of R < 0.67 and R > 1.5 were regarded as important
changes in count with direction of down (decreased) and up (increased), respec-
tively. This information on up and down abundances is regarded as our primary
observational data for the learning.

3 Machine learning of trophic links using Abductive ILP

The main role of abductive reasoning in machine learning and its use in the
development of scientific theories [5] is to provide hypothetical explanations of
the empirical observations. Then based on these explanations we try to inject
back into the current scientific theory, new information that helps complete the
theory. This process of generating abductive explanations and then updating in
some way the theory with them can be repeated several times when new observa-
tional data is made available. In many implementation of abductive reasoning,
such as that of Progol 5 [7], which is used in this paper, the approach taken
is to choose an explanation that best generalises under some form of inductive
reasoning (e.g. simplest explanation approximated by compressibility). We refer
to this approach as Abductive ILP (A/ILP). We believe that ecological data
in this study fulfil the conditions for the use of A/ILP: firstly, the given back-
ground knowledge is incomplete; and secondly, the problem requires learning in
the circumstance in which the hypothesis language is disjoint from the observa-
tion language. In our problem, the set of observable data can be represented by
predicate abundance(X,S,up) (or abundance(X, S, down)) expressing the fact
that the abundance of X at site S is up (or down). This information is compiled
from FSE data as described in Section 2. The knowledge gap that we initially
aim to fill is a predation relationship between species. Thus, we declare abducible
predicate eats(X,Y’) capturing the hypothesis that species X eats species Y. In



order to use abduction, we also need to provide the rules which describe the
observable predicate in terms of the abducible predicate. An example of such a
rule is shown below.

abundance(X, S, up):- predator(X), co_occurs(S, X, Y), bigger_than(X, Y),
abundance(Y, S, up),eats(X, Y).

Similarly, a rule for abundance(X, .S, down) can be defined. This Prolog rule
expresses the inference that following a perturbation in the eco-system (caused
by the management), the increased (or decreased) abundance of species X at site
S can be explained by the fact that X eats species Y which is further down in
the food chain and the abundance of species Y is increased (or decreased). It also
includes additional conditions to constraint the search for abducible predicate
eats(X,Y), i.e. X should be a predator, X and Y should co-occur and that
X should be bigger than Y. Predicates predator(X), co-occurs(S,X,Y) and
bigger_than(X,Y") are provided as part of the background knowledge. Given this
model and the observable data, Progol 5 generates a set of ground abductive
hypotheses in the form of ‘eats’ relations between species. This set of ground
hypotheses can be visualised as a network of trophic links (food webs) as shown
in Figure la. In this network a ground fact eats(a, b) is represented by a trophic
link from b to a.

4 Probability estimation and evaluation of hypotheses

In order to get probability estimates for ground hypotheses, we use a technique
which is based on direct sampling from the hypothesis space. In some ILP sys-
tems, including Progol, training examples also act as seeds to define the hypothe-
ses space (e.g. a most specific clause is build from the next positive example).
Hence, different permutations of the training examples define different parts of
the hypothesis space. We use this property to sample from the hypothesis space
by random permutations of the training data. Probability of ground hypotheses
can be estimated based on the frequency of occurrence when random permuta-
tions of the training data (and hence different seeds for defining the hypothesis
space) are considered. Using this technique, the thickness of trophic links in
Figure la represent probabilities which are estimated based on the frequency of
occurrence from 10 random permutations of the training data.

In order to empirically evaluate the hypothetical trophic links, we use leave-
one-out cross-validation test on the observable data for species in the network,
i.e. leaving out the abundance of each predator at each site and trying to predict
whether the abundance is up or down, given the trophic network generated from
the rest of the data. For the trophic network with probabilities, we first calculate
the relative frequencies of hypotheses which imply that the abundance of the test
example e is up or down. Let p;(e) be the relative frequency of hypotheses which
imply e is up and p|(e) is defined analogously. If p;(e) > p;(e) then we predict
that the abundance of the test example e is up and otherwise it is down. p;(e) and
pi(e) can be calculated using a Stochastic Logic Program (SLP) with the rules
for abundance(X, S, up) and abundance(X, S, down) (as described in Section 3)
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Fig. 1. a) Hypothetical trophic network (food web) constructed by A/ILP. Thickness of trophic links represent probabilities which
are estimated based on the frequency of occurrence from 10 random permutations of the training data. b) Predictive accuracies of
probabilistic trophic network vs. non-probabilistic networks from leave-one-out cross-validation tests. ¢) Tabulated trophic links for some
prey (columns) and predator (rows) species combination in Figure la. Each pairwise hypothesised link has a strength (i.e. frequency
between 1 to 10) followed by references (in square brackets) in the literature (listed in Appendix) supporting the link.



and the abduced predicates eats with probabilities which correspond to their
frequencies. Figure 1b compares the predictive accuracy of probabilistic and non-
probabilistic networks, i.e. networks generated from 10 random permutations or
from a single run. The results suggest that the predictive accuracies for the non-
probabilistic networks are increased from around 65% to around 75% for the
probabilistic network when more than 50% of the training data are provided.
In all cases the predictive accuracies are significantly higher than the default
accuracy of the majority class (i.e. down).

The trophic network in Figure la has been examined by the domain experts
and corroboration of many of the links in the literature have been found. Table 1c
is a tabular representation for some prey (columns) and predator (rows) species
combination in Figure la. Each pairwise hypothesised link has a strength (i.e.
frequency between 1 to 10) followed by references (in square brackets) in the liter-
ature (listed in Appendix) supporting the link. In this table, only prey/predators
are shown which have at least one link with strength more than or equal to 7.
This table shows that many of the links, suggested by the model, are corrob-
orated by the literature. In particular, links in the model ascribed with high
probability are shown to correspond well with those having multiple references
in the literature. In some cases novel high probability links are suggested, which
could be tested.

5 Conclusions

We find that machine learning, using A/ILP, produced a convincing food web
from sample ecological data. Many of the important abduced trophic links are
supported either by the literature or the expert knowledge of agricultural ecol-
ogists. This food web representing probabilistic interactions between species
can readily be interpreted by Ecologists and the logical framework for learn-
ing trophic links can be openly discussed, a priori, and the hypothesised links
are not an abstract, statistical product of the data. Two aspects of the use of
A/ILP in this paper are particularly novel. Firstly, unlike previous applications
of A/ILP, the abductive predicate ‘eats’ is entirely undefined before the start of
the learning process. This setting is close to the classic hard problem of predicate
invention within ILP. The second novel aspect of the approach relates to the as-
signment of probabilities to hypothetical ‘eats’ facts based on their frequency of
occurrence when randomly sampling the hypothesis space. The resulting proba-
bilistic network is a compact summary of the hypothesis space with a posterior
distribution which could be viewed as a Bayes predictor and is expected to
have lower error. The results of cross-validation tests suggest that the trophic
networks with probabilities have higher predictive accuracies compared to the
networks without probabilities. In this paper we have reported the predictive ac-
curacies for binary classification. However, we have also used expected utilities
implemented as Decision-Theoretic Logic Programs (DTLPs) [3] for estimating
R values (treatment effect ratio as described in Section 2). Initial results suggest
that using probabilities leads to reduced mean square errors when estimating R
values in cross-validation tests. The probabilistic trophic network together with



the expected utility approach can be viewed as a Decision-Theoretic representa-
tion which we call an Acyclic Expectation Network (AEN). We intend to study
different aspects of this representation in a follow up paper.
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