
Machine Learning Coalgebraic Proofs

Ekaterina Komendantskaya1

Department of Computing, University of Dundee, UK ?

Abstract. This paper presents a method to machine learn formal proofs
using neural networks. The method exploits coalgebraic approach to
proofs. The success of the method is demonstrated on three applica-
tions allowing to distinguish well-formed proofs from ill-formed proofs,
identify families of proofs and even families of potentially provable goals.
Key words: Logic Programming, Coalgebra, Coinductive Proofs, Sta-
tistical Machine Learning, Neural Networks

1 Introduction

Mathematical proofs can be developed in a formal language and within well-
defined logical (deductive) theory; this reasoning can even be done by automated
theorem provers. However, in practice, some steps in formal reasoning may have
statistical or inductive nature, cf. [1, 2, 4]. This paper proposes a method of using
statistical machine learning in analysis and implementation of formal proofs.

Higher-order interactive theorem provers (e.g. HOL or Coq) have been
successfully developed into complicated environments for mechanised proofs.
Whether these provers are applied to big industrial tasks in software verification,
or to formalisation of mathematical theories, a programmer may have to tackle
thousands of lemmas and theorems of variable sizes and complexities. A proof
in such languages is constructed by combining a finite number of tactics. Some
proofs may yield the same pattern of tactics, and can be fully automated, and
others may require programmer’s intervention. Discovery of such proof tactics
may be one area of application of machine learning and pattern recognition.

Another feature of theorem proving is that unsuccessful attempts of proofs,
although discarded when the correct proof is found, play an important role in
proof discovery. This kind of “negative” information finds no place in mathemat-
ical textbooks or libraries of automated proofs. Conveniently, analysis of both
positive and negative examples is inherent in statistical machine learning [3].

However, applying statistical machine-learning methods to generalise or clas-
sify data coming from proof theory is a challenging task for several reasons. To
mention a few, formulae written in formal language have precise, rather than
statistical nature. For example, list(nil) may be a well-formed term, while
list(nol) - not; although they may have similar patterns recognisable by ma-
chine learning methods. Another problem is that many algorithms applied in

? The work was supported by the Engineering and Physical Sciences Research Council,
UK; Postdoctoral Fellow research grant EP/F044046/2.

proof theory are sequential, such as e.g. first-order unification, while most sta-
tistical learning methods perform parallel processing of vectors of data.

As a solution to the outlined problems, the paper shows that coalgebraic ap-
proach to proofs may provide the right area for applications of machine learning
methods. Firstly, coalgebraic computations are often concurrent, and this may
be the key to obtaining adequate vector representations of the problems. Sec-
ondly, they are based on the idea of repeating patterns of potentially infinite
computations. These patterns mimic the internal term structure, which may be
detected by methods of statistical pattern recognition, [3].

This paper presents a method to recognise coinductive proofs using machine
learning. Section 2 introduces the coalgebraic approach to proofs in first-order
logic programming. Section 3 formulates a suitable representation of the coin-
ductive proofs trees. Section 4 uses this representation to train neural networks
for three different tasks. Section 5 concludes.

2 Coinductive proofs and proof-trees

We assume that the reader is familiar with the basic techniques of Logic Pro-
gramming [8]. We start with an example of a logic program.

Example 1. Let ListNat denote the logic program consisting of clauses

1. nat(0)←
2. nat(s(x))← nat(x)

3. list(nil)←
4. list(cons x y)← nat(x), list(y)

The algorithm of SLD-resolution [8] is a sequential proof-search algorithm.

Example 2. For a goal G0 = list(cons(x, cons(y, x))), SLD-resolution
produces a sequence of proof steps: G1 = nat(x),list(cons(y, x)), G2 =
list(cons(y,0)), G3 = nat(y),list(0), G4 = list(0), G5 = fail. If we
consider applications of each of the clauses 1-4 as tactics, and also tactics 5 and
6 for “fail” and “succeed”, then the proof could be represented as 4,1,4,1,5. It is
a well-formed proof, although the derivation fails; 4,1,4,1,6 - would be ill-formed.

We briefly recall the definition of the coinductive derivation trees from [7].

Definition 1. Let P be a logic program and G =← A be an atomic goal. The
coinductive derivation tree for A is a possibly infinite tree T satisfying the fol-
lowing properties.

– A is the root of T .
– Each node in T is either an and-node or an or-node: Each or-node is given

by •. Each and-node is an atom.

– For every and-node A′ occurring in T , there exist exactly m > 0 distinct
clauses C1, . . . , Cm in P (a clause Ci has the form Bi ← Bi

1, . . . , B
i
ni

,
for some ni), such that A′ = B1θ1 = ... = Bmθm, for some substitu-
tions θ1, . . . , θm, then A′ has exactly m children given by or-nodes, such
that, for every i ∈ m, the ith or-node has n children given by and-nodes
Bi

1θi, . . . , B
i
ni
θi.

Note that, comparing this with the SLD-resolution algorithm, the definition
of coinductive derivation tree introduces concurrent, and not sequential deriva-
tions. It restricts unification to the case of term matching, i.e., the substitution
θ unifying atoms A1 and A2 is applied only to one atom, e.g. A1 = A2θ, whereas
traditionally mgus satisfy A1θ = A2θ. The term-matching algorithm is paral-
lelisable, in contrast to the unification algorithm, which is P-complete.

Coinductive derivations resemble tree rewriting. The notion of a successful
proof is captured by the definition of success subtrees [7], see Figure 1.

li(c(x, c(y, z)))

nat(x) li(c(y, z))

nat(y) li(z)

→
li(c(s(w), c(s(w), nil)))

nat(s(w))

nat(w)

li(c(s(w), nil)

nat(s(w))

nat(w)

li(nil)

→
li(c(s(0), c(s(0), nil)))

nat(s(0))

nat(0)

2

li(c(s(0), nil)

nat(s(0))

nat(0)

2

li(nil)

2

Fig. 1. Two derivation steps by coinductive derivation trees, for the program ListNat.
We abbreviate cons by c and list by li in this figure. The symbol 2 signifies “success”.
The last tree is a success tree which implies that the whole sequence of derivation steps
above is successful.

3 Feature Selection and Vector representation

Pattern recognition methods [3] require feature selection and vector representa-
tion of data. One possible representation for sequential proofs is to use sequences
of tactics similar to those considered in Example 2.

Example 3. In Example 2, we have considered a “positive” example of the tactic
4,1,4,1,5 for the goal G0 = list(cons(x,cons(y,x))). However, we cannot
generalise this knowledge to future examples, as, the same tactic can produce
an ill-formed derivation for the goal G0 = list(cons(x,cons(y,z))). G1 =
nat(x), list(cons(y,x)), G2 = list(cons(y,x)), G3 = nat(y),list(z),
G4 = list(z), G5 = fail. The last goal fail makes the derivation ill-formed.

The example above shows that, having sufficiently big and representative set
of training and testing examples, learning the tactics using this shallow method
will not yield robust results. More generally, it appears that sequential algorithms
lead to less natural machine learning realisations, due to the fact that they hide
the structure of the proofs by allocating the main burden to sequential algorithms
like unification and backtracking, [6, 5]. Compare the sequential derivations of
Example 2 with coalgebraically-inspired coinductive trees. The latter does not
employ either unification or backtracking, but have to handle derivations by
exploiting structural properties of the trees - e.g., parallel branching; see [7] for
a deeper analysis of this.

We will re-formulate the same task of proof-classification relative to coinduc-
tive trees. This time, we propose a more sophisticated feature selection method
that captures the tree structure and patterns arising in these trees, e.g. depen-
dencies between the structure of terms, predicates, and branching. For a given
logic program P , a formula A, and the coinductive tree T built for A, we convert
coinductive trees into vectors as follows.

1. Define a one-to-one function |.| that assigns a numerical value to each
function symbol in A, including nullary functions. Assign −1 to any variable
occurring in T .

Example 4. For program ListNat, one encoding could be |O| = 6, |S| = 5,
|cons| = 2, |nil| = 3, |x| = |y| = |z| = −1.

2. Complex terms are encoded by simple concatenation of the values of the
function symbols. If the primitive value is negative, its positive value is concate-
nated, but the value of the whole term is negative.

Example 5. |cons(x,cons(y,x))| = −21211.

3. Build a matrix M for T as follows. The number of columns of M is equal
to n+ 2, where n is the number of distinct predicates appearing in the program
P . The number of rows is equal to the number m of distinct terms appearing in
T . The entries of M are computed as follows. For the ith predicate R, and the
jth term t, the ijth matrix entry is |t| if R(t) is a node of T , and 0 otherwise.
For the n+ 1 column and the jth term t, if every node containing Q(t) for some
Q ∈ P has exactly k children given by or-nodes, then the (n + 1)jth entry in
M is equal to k; and it is −1 otherwise. For the n+ 2 column and the jth term
t, if all children of the node Q(t), for some Q ∈ P are given by or-nodes, such
that all these or-nodes have children nodes 2, then (n+ 2)jth entry is 1; if some
but not all such nodes are 2, then the then (n + 2)jth entry is −1; and it is 0
otherwise.

Example 6. For the left-hand tree in Figure 1, the 4-by-5 matrix M is computed
as shown inside the double lines:

list nat • 2
cons(x, cons(y, z)) - 21211 0 2 0

cons(y, z)) - 211 0 2 0

x 0 -1 0 0

y 0 -1 0 0

z -1 0 0 0

4. The matrix M is then flattened into a vector, so that, if the size of M is
(n+ 2)×m, then the vector V will have (n+ 2)×m elements.

Example 7. The matrix M above will be given by V =
[−21211,−211,−1,−1, 0, 0, 0,−1, 0, 0, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0].

4 Machine-learning proof patterns

The obtained vectors are now suitable to be given as inputs to a neural net-
work. All the experiments here were made in MATLAB Neural Network Toolbox
(pattern-recognition package), with a standard three-layer feed-forward network,
with sigmoid hidden and output neurons. Such networks can classify vectors ar-
bitrarily well, given enough neurons in the hidden layer, we used 30 or 40 hidden
layers for various experiments. The network was trained with scaled conjugate
gradient back-propagation.

Problem 1. Classification of well-formed and ill-formed proofs.
Given a set of examples of well-formed and ill-formed coinductive trees, train
the neural network so that, for any new example of a coinductive tree, it cor-
rectly classifies it in either of the two classes.

Figure 1 shows three well-formed trees. Trees that do not conform to Defini-
tion 1 are ill-formed. A legitimate research question is: will this property yield
pattern-recognition in neural networks? We used a set of 116 examples of well-
formed and ill-formed trees, a sample of this set is given in the Appendix. The
accuracy of classification reached as high as 73%.

Problem 2. Discovery of proof families. Given a set of positive and
negative examples of well-formed coinductive trees belonging to a proof family,
train the neural network so that, for any new example of a coinductive tree, it
correctly recognises whether it belongs to the given family.

Definition 2. Given a logic program P , and an atomic formula A, we say that
a tree T belongs to the family of coinductive trees determined by A, if T is a
coinductive tree with root A′ and there is a substitution θ such that Aθ = A′.

Example 8. The three trees in Figure 1 belong to the family of proofs determined
by list(cons(x,cons(y,z))).

Determining whether a given tree belongs to a certain coinductive family has
practical applications. For Figure 1, knowing that the right-hand tree belongs to
the same family as the left-hand-side tree would save the intermediate derivation
step. Moreover, in [7], determining such intermediate tree required unification
algorithm, which was the only part that did not yield parallelisation.

Machine learning offers an elegant solution to the problem. For the pattern
recognition tool, we used 60 examples of trees classified as positive or negative
examples for the family of trees for list(cons(x,cons(y,z))), see the appendix
for a sample. The accuracy of the neural-network based recognition reached 100%
for some training setting and samples, and never fell lower than 98%.

Problem 3. Discovery of potentially successful proofs. Definition 2
conveys the idea of coinductive derivations, but it may not exactly capture
the common intuition of what a proof is. For example, a coinductive tree for
list(cons(x,cons(y,x)))) will be in the same proof-family as trees of Figure
1, however, the formula will never be proven, and indeed it is false. We say that
a proof-family F is a success family if, for all T ∈ F , T generates a proof-family
that contains a success tree.

Proposition 1. Given a coinductive tree T , there exists a success family F such
that T ∈ F if and only if T has a successful derivation.

We used neural-network pattern-recognition tool to recognise trees from the
success family; and, bearing in mind logical complexity of the notion, its accuracy
was astonishing, reaching 95%.

5 Conclusions and Further Work

We have developed a method to analyse the structure of first-order proofs in logic
programming. The method is based on coalgebraic approach to proofs; and also
includes a feature-extraction algorithm that translates proof trees into vectors.
As is usual for statistical pattern recognition, a suitable method for feature selec-
tion determines the success at the stage of neural network training. The success
of learning the patterns show that the method has potential. It can be used for
recognition of well-formed and ill-formed proofs, as in Problem 1; recognition of
families of proofs, as in Problem 2; or even distinguishing potentially successful
proofs, as in Problem 3. The latter two have significance for concurrent imple-
mentation of coinductive derivations of [7]. Ultimately, these three applications
can be extended to proofs in higher-order theorem provers, and help to further
advance their automatisation.

References

1. A. d’Avila Garcez, K. B. Broda, and D. M. Gabbay. Neural-Symbolic Learning
Systems: Foundations and Applications. Springer-Verlag, 2002.

2. L. de Raedt. Logical and Relational Learning. 2008.
3. R. Duda, P. Hart, and D. Stork. Pattern Classification. John Wiley, 2001.
4. L. Getoor and B. Taskar. Introduction to Statistical Relational Learning. MIT Press,

2007.
5. E. Komendantskaya. Parallel rewriting in neural networks. In Proceedings of

ICNC’09, Madeira, 3-7 October. INSTICC, 2009.
6. E. Komendantskaya. Unification neural networks: Unification by error-correction

learning. Logic Journal of IGPL, 2010.
7. E. Komendantskaya and J. Power. Coalgebraic derivations in logic programming.

In CSL’11, 2011.
8. J. Lloyd. Foundations of Logic Programming. Springer-Verlag, 2nd edition, 1987.

A Examples of the trees from the training set for
Problem 1.

list(cons(x, cons(y, x)))

nat(x) list(cons(y, x))

nat(y) list(x)

list(cons(x, cons(y, x)))

nat(x)

2

list(cons(y, x))

nat(y)

2

list(x)

2

Fig. 2. An example of the training set for Problem 1. Left-hand-side tree is a positive
example, and the right-hand-side — negative.

nat(s(s(s(s(O)))))

nat(s(s(s(O)))

nat(s(s(O)))

nat(s(O))

nat(O)

2

nat(s(s(s(s(O)))))

nat(s(s(s(O)))

nat(s(s(O)))

Fig. 3. An example of the training set for Problem 1. Left-hand-side tree is a positive
example, and the right-hand-side — negative.

B An example of the training data set of proof trees for
Problems 2 and 3.

Figure 1 shows three positive examples of the trees from the family determined
by list(cons(x,cons(y,z))). Here, we also show negative examples.

list(cons(x, cons(y, x)))

nat(x) list(cons(y, x))

nat(y) list(x)

list(cons(s(O), nil)))

list(cons(s(O), nil))

nat(s(O))

nat(O)

2

list(nil)

2

Fig. 4. The left-hand-side tree is a positive example for recognition of the trees be-
longing to the family of list(cons(x,cons(y,z))), and the right-hand-side tree is
not. However, both trees are negative examples of the trees from the success family
determined by the formula. The positive examples of both family and success family
of list(cons(x,cons(y,z))) are also given e.g. in Figure 1.

