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Abstract. A cograph is a graph which can be generated by disjoint
union and complement operations on graphs, starting with a single ver-
tex graph. Toward effective data mining for graph structured data, we
introduce a graph pattern expression, called a cograph pattern, based
on cographs. We show that the class of cograph pattern languages is
polynomial time inductively inferable from positive data.

1 Introduction

A cograph (complement reducible graph) is a graph which can be generated
by disjoint union and complement operations on graphs, starting with a single
vertex graph. Research results on cographs include recognition algorithm for
cographs [3] and properties of cographs [2]. Any graph can become a cograph
by adding edges. Some results on a method for adding a minimal number of
such edges are obtained. Since a cograph has many useful properties, it is known
that several problems which are intractable for general graphs, such as graph
isomorphism problem, graph coloring problem and Hamiltonian cycle problem,
are solvable in polynomial time for cographs.

In this paper, we introduce a cograph pattern which is an expression for com-
mon structures in graph databases. A cograph pattern is a graph pattern having
structured variables which can be substituted by arbitrary cographs. For a co-
graph pattern g, the cograph pattern language of g is the set of all cographs
obtained from g by substituting arbitrary cographs for all variables in g. A
cograph pattern has a unique representation of a rooted tree. This representa-
tion is called a cotree pattern. We give examples of cograph patterns and their
corresponding cotree patterns in Fig. 1. Firstly, we propose a polynomial time
pattern matching algorithm for cograph patterns, based on cotree patterns, a
polynomial time isomorphism algorithm for cographs [2] and a polynomial time
pattern matching algorithm for linear interval graph patterns [7]. Secondly, we
give a polynomial time algorithm for the minimal language problem which is,
given a set S of cographs, to find a cograph pattern g such that the language of
g is minimal among all cograph pattern languages which contain all cographs in
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Fig. 1. G, g, f1, and f2 are cograph patterns which have cotree patterns T [G], T [g],
T [f1], and T [f2], respectively. We use square boxes to describe variables of cograph
patterns and cotree patterns.

S. Finally, we show that the class of cograph pattern languages is polynomial
time inductively inferable from positive data.

2 Preliminaries

For a graph G, the vertex and edge sets of G are denoted by V (G) and E(G),
respectively. For a subset U of V (G), an induced subgraph of G w.r.t. U , denoted
by G[U ], is the subgraph F of G such that V (F ) = U and E(F ) = {{u, v} ∈
E(G) | u, v ∈ U}. For two graphs G1 and G2, a union graph of G1 and G2,
denoted by G1 ∪ G2, is the graph having the vertex set V (G1) ∪ V (G2) and
the edge set E(G1) ∪ E(G2). For a graph G having no cycle and self-loop, a
complement graph of G, denoted by Ḡ, is the graph having the vertex set V (G)
and the edge set {{u, v} | u, v,∈ V (G), {u, v} ̸∈ E(G)}.

Definition 1. (Cograph pattern) Let Σ and X be alphabets. An element of
X is called a variable label and a vertex labeled with a variable label is called a
variable. Then, a complement reducible graph pattern (cograph pattern, for short)
is a vertex-labeled undirected graph over Σ ∪ X recursively defined as follows.

1. A single vertex labeled with an element in Σ ∪ X is a cograph.
2. The union graph G1∪G2∪· · ·∪Gk of k cographs G1, G2, . . . , Gk is a cograph

(Disjoint Union Operation).
3. The complement graph of a cograph is a cograph (Complement Operation).

A cograph pattern g is denoted by a triplet (V (g), E(g),H(g)) consisting of a set
V (g) of vertices labeled with elements in Σ, an edge set E(g) and a set H(g) of
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variables. The set of all cograph patterns is denoted by CGP. A cograph pattern
having no variables is called a cograph. The set of all cographs is denoted by
CG. In this paper, we deal with cograph patterns satisfying that all variables in
each cograph pattern have mutually distinct variable labels in X . In [2], it is
shown that G is a cograph if and only if there is no subset U of V (G) such that
the induced subgraph G[U ] is isomorphic to the chain consisting of 4 vertices.
Moreover, in [2], Corneil showed that, for any subset U ⊆ V (G), the induced
subgraph G[U ] is a cograph.

For two cograph patterns g and f , we write g ∼= f if g is isomorphic to f .
Let g be a cograph pattern. For a vertex or a variable u in V (g) ∪H(g), Ng(u)
denotes the set of all neighborhoods of u, i.e., Ng(u) = {v | {u, v} ∈ E(g)}.
Let x be a variable label in X and f a cograph. The form x/f is called a
variable replacement of x by f . A new cograph pattern g{x/f} is obtained
by replacing the variable h having the variable label x with f . In detail, by
applying the variable replacement x/f to g, we can construct a new cograph
pattern g{x/f} = (V (g) ∪ V (f), E′,H(G) ∪H(f) − {h}), where E′ = (E(g) ∪
E(f) ∪ {{u, v} | u ∈ Ng(h), v ∈ V (f)}) − {{u, h} | u ∈ Ng(h)}. A substi-
tution is a finite collection of variable replacements [x1/f1, x2/f2, . . . , xn/fn],
where xi’s are mutually distinct variable labels in X , fi’s are cographs. For
a substitution θ = [x1/f1, x2/f2, . . . , xn/fn], a new cograph pattern gθ is ob-
tained by applying all variable replacements xi/fi in θ to g sequentially, i.e.,
gθ ∼= (· · · ((g{x1/f1}){x2/f2}) · · ·){xn/fn}. For example, in Fig. 1, cograph pat-
tern G is obtained from g by substituting f1 and f2 for x and y, respectively.

Definition 2. (Cograph pattern language) For a cograph pattern g ∈ CGP,
the cograph pattern language of g, denoted by L(g), is defined as the set {G ∈
CG | G ∼= gθ for some substitution θ}.

3 Inductive Inference of Cograph Pattern Languages

For a class C, Angluin [1] and Shinohara [5] showed that if C has finite thick-
ness, and the membership problem and the minimal language problem for C are
solvable in polynomial time then C is polynomial time inductively inferable from
positive data. We consider the class LCGP = {L(g) | g ∈ CGP} as a target of
inductive inference. For a set S, |S| denotes the number of elements in S.

It is easy to see that the following lemma holds, that is, for any nonempty
finite set S ⊆ CG, the cardinality of the set {L ∈ LCGP | S ⊆ L} is finite.

Lemma 1. The class LCGP has finite thickness.

By presenting a polynomial time matching algorithm for solving the following
Membership Problem for LCGP in Sec. 3.1, we show Theorem 1.

Membership Problem for LCGP
Instance: A cograph pattern g ∈ CGP and a cograph G ∈ CG.
Question: Does L(g) contain G?
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Algorithm Matching-CGP(g,G); // g : a cograph pattern, G : a cograph;
output: “yes” or “no”;
begin
1: Construct a cotree pattern T [g] of g;
2: Construct a cotree T [G] of G;
3: output Matching-CT P(T [g], T [G])
end.

Fig. 2. Algorithm Matching-CGP

Theorem 1. Given a cograph pattern g ∈ CGP and a cograph G ∈ CG, Member-
ship Problem for LCGP is solvable in O(nN1.5) time, where n = |V (g)|+ |H(g)|
and N = |V (G)|.

A minimally generalized cograph pattern explaining a given set of cographs
S ⊆ CG is a cograph g such that S ⊆ L(g) and there is no cograph pattern g′

satisfying that S ⊆ L(g′) ⊆
/

L(g). By giving a polynomial time algorithm for
solving the following MINL Problem for LCGP in Sec. 3.2, we show Theorem 2.

MINL Problem for LCGP
Instance: A nonempty set of cographs S ⊆ CG.
Question: Find a minimally generalized cograph pattern g ∈ CGP explaining S.

Theorem 2. Given a nonempty set of cographs S ⊆ CG, MINL Problem for
LCGP is solvable in O(|S|N3

minN
1.5
max) time, where Nmin = minG∈S |V (G)| and

Nmax = maxG∈S |V (G)|.

Therefore, we have the following main result.

Theorem 3. The class LCGP is polynomial time inductively inferable from pos-
itive data.

3.1 A matching algorithm for cograph patterns

In Fig. 2, we give a polynomial time algorithm Matching-CGP solving Mem-
bership Problem for LCGP . This algorithm reduces the membership problem
for CGP to the membership problem for tree representations of cographs. A tree
representation of a cograph pattern, called a cotree pattern, is defined as follows.

Definition 3. (Cotree pattern) A cotree pattern is a node-labeled unordered
tree satisfying the following conditions. (1) A label of an internal node whose
depth is an odd number (resp., even number) is “0” (resp., “1”). (2) A label of
a leaf is in Σ ∪ X .

A cograph pattern G can be represented by a cotree pattern T as follows. The
internal node of T labeled with “0” (resp., “1”) represents a disjoint union oper-
ation (resp., disjoint union and complement operations for complementing each
graph) and called a “0-node” (resp., “1-node”). A leaf labeled with an element
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in Σ represents a vertex of G. A leaf labeled with an element in X , called a
variable, represents a variable of G. A cotree pattern is a unique representation
of a cograph pattern [2]. For a cograph pattern G, T [G] denotes the cotree rep-
resentation of G. For a variable node h, parent(h) denotes the parent of h. A
cotree pattern having no variable node is called a cotree simply.

Let f be a cotree pattern and h a variable of f with variable label x ∈ X . Let
g be a cotree pattern having r as its root. Then the form x/g is called a binding
for x. A new cotree pattern f{x/g} can be obtained by applying the binding
x/g in the following way.
1. If g has only one leaf or parent(h) is a ”1-node”, then remove h and identify

r with parent(h).
2. If parent(h) is a ”0-node” and r has exactly one child, then remove both h

and r and identify the child of r with parent(h).
3. Otherwise, remove h and attach r to parent(h) as a child.

A substitution θ = [x1/g1, . . . , xn/gn] is a finite collection of bindings such
that for any i, j (1 ≤ i < j ≤ n), the variable label xi and xj are distinct. The
cotree pattern fθ is obtained by applying all bindings in θ to f sequentially.

We can show the following lemma for cotree patterns.

Lemma 2. For a cograph pattern g and a substitution θ = [x1/g1, . . . .xn/gn],
there exists a substitution θT = [x1/T [g1], . . . , xn/T [gn]] such that T [gθ] ∼=
T [g]θT holds.

From lemma 2, Membership Problem for LCGP is reduced to the following
membership problem for cotree patterns. We show Lemma 3.
Instance: The cotree pattern T [g] of a cograph pattern g and the cotree T [G]
of a cograph G,
Question: Is there a substitution θ such that T [G] ∼= T [g]θ holds?

Lemma 3. The membership problem for cotree patterns is solvable in O(nN1.5)
time, where n = |V (g)|+ |H(g)| and N = |V (G)|.

We propose an algorithm Matching-CT P to solve the membership problem
for cotree patterns in polynomial time, based on a polynomial time pattern
matching algorithm for linear interval graph patterns [7]. Corneil et al. [3] showed
that for a cograph pattern g, T [g] can be constructed from g in linear time w.r.t.
|V (g)|+ |H(g)| and |E(g)|. From Lemmas 2 and 3, we show Theorem 1.

3.2 An MINL algorithm for cograph patterns

In this section, we assume that |Σ| = ∞. Let g and f be cograph patterns. The
algorithm MINL-CGP (Fig. 3) solves the MINL problem for LCGP . The lines
4–7 extend a cograph patterns g by adding variables as much as possible while
S ⊆ L(g) holds (Fig. 4). The lines 11–12 tries to replace each variable in g with a
labeled vertex if it is possible. We have the following lemma. We omit the proof.
From the following lemma, we show Theorem 2.

Lemma 4. Let g ∈ CGP be the output of the algorithm MINL-CGP for an input
S. Let g′ be a cograph pattern satisfying that S ⊆ L(g′) ⊆ L(g). Then g′ ∼= g.
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Algorithm MINL-CGP(S); // S : a set of cographs;
output: g : a minimally generalized cograph pattern;
begin
1: Let g be a cograph pattern with one variable;
2: Let g1 (resp., g2) be a connected (resp. unconnected) cograph

with two unmarked variables (Fig. 4);
3: if S contains both connected and unconnected cographs then output g;
4: foreach unmarked variable h having variable label x in g do
5: if Matching-CGP(g{x/g1}, G)=”yes” for ∀G ∈ S then g := g{x/g1}
6: else if Matching-CGP(g{x/g2}, G)=”yes” for ∀G ∈ S then g := g{x/g2}
7: else mark h;
8: Unmark all variables of g;
9: Let Σ(S) be the set of all single vertices whose labels appear in S;
10: foreach unmarked variable h having variable label x in g do
11: if ∃a ∈ Σ(S) s.t. Matching-CGP(g{x/a}, G)=”yes” for ∀G ∈ S
12: then g := g{x/a} else mark h;
13: output g
end.

Fig. 3. Algorithm MINL-CGP g1 g2z g{z/g2}g xyxyg{z/g1} xy xy
g1 g2z g{z/g2}g xyxyg{z/g1} xy xy

Fig. 4. Two refinement operators on Algorithm MINL-CGP (Fig. 3).
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