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Abstract. In this paper, we propose an inductive approach to find candidates of
ligands for TRP ion channels from databases, which play crucial roles for sensory
transduction of living things and are actively studied in biology and biochemistry.
To study properties of TRP channels biologically, ligands are key tools, which are
chemical substances and activate or inhibit TRP channels by docking to them.
However, finding a new ligand is difficult; choosing candidates of ligands relies
on expert knowledge of biologists and test experiments in vitro and in vivo costs
high in terms of time and money. Thus an in silico approach to find candidates of
ligands helps biologists. Here we achieve this task by treating as semi-supervised
learning from ligand databases and using SELF (SEmi-supervised Learning via
FCA) recently proposed by two of the authors. SELF finds classification rules
from mixed-type data including both discrete and continuous variables using FCA
(Formal Concept Analysis). We show that SELF works well compared to other
learning methods, and find candidates of ligands for TRP channels from more
than thousand ligands stored in a database.
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1 Introduction

TRP (Transient Receptor Potential) ion channels form a class of ion channels, which are
usually located on the plasma membrane, and they play a crucial role for sensory trans-
duction. In particular, ThermoTRPs, a subset of TRP channels, are activated by changes
in temperature [5]. Each channel has its own thermal thresholds and is considered as
a “gate” of temperature sensation, such as cold or hot [2]. To experimentally analyze
TRPs (in biological sense), biologists use ligands, which are chemical substances and
activate (called agonist or activator) or inhibit (called antagonist or inhibitor) TRPs’
response (Figure 1). Interestingly, each ligand has selectivity; i.e., binding cites of ion
channels to which it can dock is limited and this is why they are convenient for exper-
iments. However, finding ligands is difficult. Choosing candidates of ligands relies on
expert knowledge of biologists and experiments for testing ligands in vitro and in vivo
costs high in terms of time and money. Thus an in silico approach to find candidates of
ligands will help biologists.
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Fig. 1. Ligand-gated ion channels.

In this paper, we adopt an inductive, data mining, approach to find ligand candidates
for TRPs from databases, and we use the framework of semi-supervised learning [3, 16]
mainly studied in the machine learning community. Semi-supervised learning is a spe-
cial form of classification, where a learning algorithm uses both labeled and unlabeled
data to obtain a classification rule (a label is an identifier of a class). Commonly, only
few labeled data are available since labeling data costs high in a real situation. Now only
few ligands for TRPs are discovered, and lots of ligands for other receptors are avail-
able. Thus if we use ligands for TRPs and the other ligands as labeled and unlabeled
data, respectively, semi-supervised learning fits to our goal.

Information about TRPs (and other ion channels) and ligands is donated to various
databases, such as KEGG3, and in this paper we use the IUPHAR database4 [13]. In
the database, for each ligand, we can know to which receptors it binds. Moreover, every
ligand is characterized by seven attributes as follows: Hydrogen bond acceptors, Hydro-
gen bond donors, Rotatable bonds, Topological polar surface area, Molecular weight,
XLogP, and No. Lipinski’s rules broken. Here, forth, fifth, and sixth attributes are real-
valued features, and the others are nominal features. Thus to learn classification rules
for ligands from this database using the above seven attributes, a learning algorithm is
required to handle mixed-type data including both discrete and continuous variables.

Now various semi-supervised learning methods are available, but most of them are
for learning from data with real-valued features. Moreover, to the best of our knowledge,
only the semi-supervised learning method SELF (SEmi-supervised Learning via Formal
Concept Analysis) [14], proposed by two of the authors, can directly hadle mixed-type
data. We therefore use SELF in this paper to obtain classification rules and discover
licand candidates from ligand databases.

To date, no study treats mining of classification rules for ligands from databases.
Some studies focus on predicting affinity of ligands, the strength of docking. Recently,
the literature [1] proposed a machine learning approach to predict affinity, but we can-
not know whether or not a ligand binds to a receptor. Most studies tried to construct
a predictive model using domain-specific knowledge, such as the potential energy of a
complex, the two-dimensional co-ordinates, and the free energy of binding [9]. How-
ever, to use such a method, some special background knowledge is required and results

3 http://www.genome.jp/kegg/
4 http://www.iuphar-db.org/index.jsp
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Fig. 2. A flowchart of classification by SELF. SELF learns classification rules from both labeled
and unlabeled ligands (training data), and classify unlabeled ligands. We say that a concept is
consistent if all labels contained in the concept are same.

depend on them. Our approach relies on only databases, hence the user do not need any
background knowledge and can easily understand results.

This paper is organized as follows: Section 2 gives methods: an overview of FCA
and SELF, and experimental settings. Section 3 describes results and discussion of ex-
periments.

2 Methods

SELF algorithm. SELF [14] learns classification rules from ligand data using FCA.
SELF allows missing values and labels in databases; this is why it can be viewed as a
semi-supervised learning method. We briefly introduce FCA and SELF in the following.

FCA [4, 7] is a mathematical and algebraic method to derive a lattice structure,
called a concept lattice, from a binary relation between objects and their attributes,
called a context and given as a cross-table. In this study, each object corresponds to



Table 1. A subset of ligand database used for labeled data. Each ligand has seven attributes; Hy-
drogen bond acceptors (HBA), Hydrogen bond donors (HBD), Rotatable bonds (RB), Topolog-
ical polar surface area (TPS), Molecular weight (MW), XLogP, and No. Lipinski’s rules broken
(NLR), and has a receptor to which it binds as a class label.

HBA HBD RB TPS MW XLogP NLR Receptor

allicin 1 0 5 61.58 162.02 0.24 0 TRPA1
allyl isothiocyanate 1 0 2 44.45 99.01 1.72 0 TRPA1
DOG 5 1 18 72.83 344.26 5.80 2 TRPC2
phosphatidylinositol 19 8 44 332.00 1022.49 9.87 4 TRPM4
menthol 1 1 1 20.23 156.15 3.21 0 TRPM8
eucalyptol 1 0 0 9.23 154.14 2.60 0 TRPM8
capsaicin 2 2 10 58.56 305.20 4.23 0 TRPV1
camphor 1 0 0 17.07 152.12 2.13 0 TRPV3
epoxyeicosatrienoic acid 3 1 14 49.83 320.24 6.58 2 TRPV4

a ligand, and SELF translates features of ligands into attributes of the context in the
data preprocessing phase. Each concept obtained by FCA is a pair of objects and at-
tributes with the closed property; i.e., objects in a concept share a common subset of
attributes and all attributes shared by the objects are in the concept. Many studies used
FCA and the closed property for machine learning and knowledge discovery, such as
classification [6] and association rule mining [10].

First SELF makes a context from a given mixed-type database using both labeled
and unlabeled data, where we use level-wise discretization for continuous variables,
and next it constructs the concept lattice from the context with FCA. Then SELF finds
maximal concepts that are consistent with given class labels. Intuitively, their attributes
correspond to the most general classification rules that explains a given labeled training
data. We show a flowchart of SELF in Figure 2.

To efficiently find all concepts, we use the algorithm proposed by Makino and Uno
[8], which is known to be one of the fastest algorithms. Their algorithm enumerates all
maximal bipartite cliques in a bipartite graph that coincide with the concept. Its time
complexity is O(∆3), where ∆ denotes the maximum degree of a given bipartite graph.
For empirical experiments, we use the program LCM5 [15] to enumerate all concepts.
As a result, time complexity of SELF is O(nd)+O(∆3)+O(Λ), where n is the number
of objects, d the number of attributes, and Λ is the number of concepts at discretization
level 1, since data preprocessing takes O(nd), making concepts takes O(∆3), and judg-
ing consistency of concepts takes less than O(Λ).

Environment. All experiments were performed in R version 2.12.2 [11] since SELF
was implemented in R. Note that LCM was implemented in C. We used Mac OS X
version 10.6.5 with two 2.26-GHz Quad-Core Intel Xeon CPUs and 12 GB of memory.

5 http://research.nii.ac.jp/˜uno/codes-j.htm



Table 2. Results of accuracy (%). We used the all ligands as unlabeled data (SELF (ALL)), the
subset of ligands which binds to TRPs (SELF (TRP)), or no unlabeled data (SELF). We used the
decision tree-based method (Tree), SVM, and kNN (k = 1, 5).

SELF
(ALL)

SELF
(TRP)

SELF Tree SVM
(RBF)

SVM
(Pory)

1NN 5NN

0.52 0.48 0.37 0.18 0.39 0.43 0.50 0.34

Databases. We collected the entire 1,782 ligand data in the IUPHAR database6 [13].
In the database, there are 44 ligands that binds to TRPs, where there exist seven TRPs:
TRPA1, TRPC2, TRPM4, TRPM8, TRPV1, TRPV3, and TRPV4. From these ligands,
we picked up nine ligands for labeled data shown in Table 1, which are known as famous
and convenient ligands of TRPs for biological experiments. Other ligands for TRPs are
used as a test data to evaluate performance of SELF. In the first experiment, we tested
SELF in transductive setting [3], that is, we used both labeled and unlabeled data to
obtain classification rules by SELF and predicted labels of unlabeled data. To measure
the effectiveness of unlabeled ligand data, we performed three cases; use all ligands as
unlabeled data, use the subset of ligands that binds to TRPs as unlabeled data, and use
no unlabeled data. Moreover, to find new candidates of ligands for TRPs, we used all
44 ligands that binds to TRPs as labeled data in the second experiment.

Control Methods. As a control method for evaluation of SELF, we adopted the decision
tree-based method implemented in R [12] since it can apply to mixed-type data. Note
that this is supervised learning method and cannot use unlabeled data in the learning
phase. Moreover, we applied SVM with the RBF and the polynomial kernels and k
nearest neighbor method (k = 1 and 5) for reference by using only real-valued features.

3 Results and Discussion

Results are summarized in Table 2. These results show that unlabeled ligand data can be
used effectively in the learning of classification rules. Moreover, if we use the all ligands
for learning, SELF shows the best result compared to other learning methods, and the
accuracy is more than 50 % despite there are seven classes. Notice that even though the
nearest neighbor also records good results, we cannot obtain any classification rules.
Our results are therefore valuable for finding new ligands by biological experiments.

In the second experiment, 79 classification rules were obtained by using the all
ligands that bind to TRPs as labeled data and, by applying the rules, 762 candidates
of ligands for TRPs were discovered from 1,782 ligands. These candidates are a novel
result and can contribute to biological studies of TRP ion channels. Checking these can-
didates by actual biological experiments is a future work. Furthermore, this approach
can be applied to any receptors, thereby discovering ligands for other receptors is an
another interesting future work.

6 http://www.iuphar-db.org/index.jsp
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