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Abstract. We propose an approach to subgroup discovery in relational
databases containing numerical attributes. The approach is based on de-
tecting bumps in histograms constructed from substitution sets resulting
from matching a first-order query against the input relational database.
The approach is evaluated on seven data sets, discovering interpretable
subgroups. The subgroups’ rate of survival from the training split to the
testing split varies among the experimental data sets, but at least on
three of them it is very high.

1 Introduction

The goal of subgroup discovery [4] has been defined in [12] as “given a population
of individuals and a property of individuals we are interested in, find population
subgroups that are statistically most interesting, e.g., are as large as possible and
have the most unusual statistical (distributional) characteristics with respect to
the property of interest.” This viewpoint of subgroup discovery has been reflected
both in the propositional [8,1] and relational [12,11] setting.

Here we explore a slightly different notion of subgroup discovery. To motivate
it, consider first a single data table in which rows describe clients and one of the
columns (attributes) contains the client’s age, which is the property of interest.
Since age is a numerical attribute, the most natural way to discover subgroups
with respect to this property is to plot the histogram of age from the data table
and look for possible bumps in the histogram. Analogically, bumps in multi-
dimensional histograms may be considered when several numerical attributes are
jointly of interest. Bump-hunting strategies for such tasks have been explored
[3,13,9] in the propositional setting.

Here we adhere to the single-dimensional case but instead generalize the
bump-hunting framework to the relational setting. For example, we would like
to be able to discover in a relational banking database that clients from Prague
fall apart into distinct subgroups according to the size of deposits they make.
This can be accomplished by inspecting the histogram of the Amount variable’s
values in the set of substitutions making the query

client(C) ∧ residence(C, prague) ∧ account(A,C) ∧ deposit(A,Amount)

true in the database. However, to preserve the interpretability of the histogram,
there should be one element in the substitution set per each client. That is to



say, values of Amount pertaining to a single client must be aggregated (e.g.,
averaged) in the substitution set before constructing the histogram.

Motivated by the above example, we developed an algorithm that, given
a relational database with a distinguished main relation (such as client above),
searches for a triple consisting of a query, a variable within the query, and a suit-
able aggregation function, so that the histogram of numerical values constructed
from these three ingredients, in the way exemplified above, exhibits remarkable
bumps. To this end, we address both the logical and statistical aspect of the al-
gorithm: in particular, we design a refinement-based search for the target query
as well as a fast, “visually inspired” histogram-inspection technique. The sim-
plicity and speed of the latter is vital due to the generally daunting embedding
of one data mining task (bump hunting) in another (query search).

In relational machine learning, the idea of analyzing substitution sets has
been explored before, e.g., for constituting relational kernels [7] or for proposi-
tionalization [5]. However, we are not aware of a previous attempt to analyze
histograms derived from substitution sets. Our approach also differs from current
subgroup discovery systems, mainly in two respects. First, it does not assume a
prior indication of a target property of interest. Second, it does not produce any
explicit rules predicting memberships in the respective discovered subgroups.
Indeed, note that the earlier example-query just specifies a database view from
which a histogram is derived; the query thus defines the population rather than
the subgroups. For these reasons, our approach falls fully in the unsupervised
learning family, unlike the straddled systems RSD [11] or CN2-SD [8].

2 Algorithm

We first describe the inner component of the algorithm (bump hunting) and then
the outer one (query search). In this short account, we omit pseudocodes.

2.1 Bump hunting

Briefly, we understand bumps as modes in histograms which are mutually sep-
arated by areas of low probability. A histogram is represented by the function
P (w), w ∈ W where W = {1, 2, . . .} is a finite set of bin indexes. We extract the
ordered subset {k1, k2, . . .} ∈ W of modes (local maxima) of P (w). Then for its
each two successive elements ki, ki+1 we compute the (normalized) area of low
probability

ALP(i,W ) =
1

|W |
∑

ki<w<ki+1

min{P (ki), P (ki+1)} − P (w) (1)

which is illustrated in Fig. 1. ALP grows with the size of the lateral modes and
decays with the interleaving bin area. Informally, it grows both with the cover-
age and mutual separation of the subgroups. The heuristic is however not fully
satisfactory as it would indicate a large number of subgroups in a histogram with
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Fig. 1. An illustration of the ALP (area of low probability) concept on the financial
dataset [2]. The random variable shown in the histogram is the highest balance ever
to appear on client’s account. Since the ALP is large here, the modes k0 and k1 are
deemed subgroups.

a large number of local maxima and with roughly equal sizes of the ALP values.
Such subgroups could be artifacts of noise, and even if not, they would not be
very interesting. Therefore we use a ‘noise cancelling’ heuristic ncALP prioritizing
histograms where only one of the areas of low probability is dominant.

ncALP(W ) = max
1≤j≤m

ALP(j,W )− ALP(j + 1,W )

j

More exhaustive or statistically-principled approaches to bump identification
have been proposed [3,13,9] using techniques such as genetic algorithms or the
EM algorithm. Unlike these approaches, the above simple method clearly has
a linear time complexity. Low runtime is vital here due to the embedding of
bump-hunting inside the query-search.

2.2 Query search

We follow a beam-search strategy with refinement steps (adding an atom with
fresh variables, unifying or instantiating a variable) according to a pre-defined
language bias as usual in inductive logic programming. We start with an empty
query. Unlike in standard ILP algorithms, each query in the search agenda is in
exactly one of three successive phases.

Germination: before a query contains an atom with a numerical variable it
can not generate any histogram and is not evaluated against the database.



Production: query contains one or more numerical variables and it generates
histograms according to which it is evaluated. Multiple histograms are created,
one for each combination of i) a numerical variable in the query, ii) an aggrega-
tion operator (drawn from a pre-defined set), and iii) the number of bins from
a pre-defined interval. Out of these histograms, the one which maximizes the
ncALP criterion is associated with the query modulo the following adjustment.
To prevent the beam search from repeatedly finding certain subgroups, the ncALP
heuristic value is multiplied by the distance (dissimilarity metric) between the
evaluated histogram and all previously found.

Retirement: when a query becomes overly specific, the set of instantiations
for a variable becomes empty. Such a query is discarded from the search agenda.

3 Experimental Evaluation
We tested the proposed algorithm on seven real-world datasets to see if it is
able to discover non-trivial yet interpretable subgroups, and to quantify any
possible tendency towards overfitting. We used the financial dataset [2], two
parts of the mutagenesis dataset [10] (regression-friendly, -unfriendly), and four
genomic datasets [6], each describing the relational structure of a biochemical
pathway along with numerical values of expressions of the involved genes in a
single phenotype (glioma samples).

Two examples of histograms with interpretable subgroups discovered in the
financial database are shown in Fig. 2. The first example is interpretable given
the regional division of the Czech Republic; unlike all other parts of the country,
Prague constitutes a single region with urbanization reaching 100%. The bump
at the right-hand side of the plot thus corresponds to loans awarded in Prague.
The second example roughly shows there are small loans and big loans. The
algorithm discovered the mentioned fact by querying for balances after transac-
tions corresponding to a given loan, taking the maximum of these balances, and
bump-hunting on the histogram of such obtained maxima.

Overfitting tendency was assessed using k × 2 (k = 6) cross-validation in
which the training and testing sets are equally large; this is needed for properly
comparing the training and testing histograms. For each training split, 5 dis-
covered triples (query, variable, aggregator) with the highest ncALP value were
kept, and their ncALP′ values were computed on the corresponding test split. As
a result, we obtained 2 ∗ 6 ∗ 5 = 60 ratio values r = ncALP′/ncALP. A single rep-
resentative value, called subgroup stability, is then computed as the geometric
mean R = 60

√
r1 · ... · r60.1 This value decreases with overfitting: Ideally R = 1,

but if bumps found in the training set do not exists in the testing set, then R
goes to 0. Note that if there is a single value of r = 0, the value of R becomes
0 destroying any information in other r values. To overcome this problem, the
amount of zero values among the r’s was saved as D and then R was computed
only from positive values of r. E.g. D = 20%, R = 75% means that one fifth of
histograms in the testing set contain no bump and the remaining ones are 1/4
less significant on average. Table 3 shows the results for the seven data sets.

1 The geometric mean is better suited for ratios than the widely used arithmetic mean.
E.g. mean value of 10% and 1000% is by common sense 100% rather than 505%.



Dataset Disappeared Subgroup Computation
bumps (D [%]) stability (R [%]) time ([s])

Mutagenesis - easy 0 90 311
Mutagenesis - hard 0 64 153
Financial 4 48 1871
hsa00190-genes expr. in glioma 30 41 444
hsa04360-genes expr. in glioma 26 37 363
hsa01430-genes expr. in glioma 20 32 335
hsa04514-genes expr. in glioma 37 15 3270

Table 1. Overfitting tendency of the subgroup discovery algorithm expressed through
two quantities (see main text).
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Fig. 2. Examples of discovered subgroups. Left: Mean of relative urbanization (per-
centage of population living in cities) of regions, where clients live. Right: Max balance
after executing a transaction. In both cases, the values of the analyzed variable (A) in
the substitution set are aggregated (left: mean, right: max) with respect to the main
relation loan so that the vertical axis corresponds to the frequency of loans.



4 Conclusions

We proposed a new concept of relational subgroup discovery based on searching
bumps in histograms constructed from substitution sets derived from matching a
first-order query against a database. The fact that a relatively simple implemen-
tation of the concept was able to discover non-trivial interpretable subgroups
that generally survive from training data to testing data is reassuring and calls
for further advancement of the algorithm. This should mainly focus on improving
the search strategy. Currently the search for the query, the optimization of the
number of bins, and the evaluation of the histogram-heuristic are rather loosely
coupled. A tighter integration would likely improve the overall performance, and
might allow to find more complex patterns.
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