
Improving search engine Query Expansion
techniques with ILP

José Carlos Almeida Santos and Manuel Fonseca de Sam Bento Ribeiro

Microsoft Language Development Center
Tagus Park, 2744-010 Porto Salvo, Oeiras, Portugal

ISCTE-Lisbon University Institute, Portugal
Email: {t-josant,t-manrib}@microsoft.com

Abstract. Query Expansion is the process in which a query is aug-
mented so that it matches more documents, thus potentially increasing
the number of relevant results. This is frequently done by spell correcting
the query and adding synonyms, morphological variations or other type
of relevant data. Query Expansion would, for example, expand ’automo-
bile’ with ’car’ or ’car’ with ’cars’.

Given a concrete set of queries and particular words in these, it is rel-
atively simple to generate lists of candidates that would later reflect as
a good or a bad alterations. However, generalizing from a ground truth
set, which is a list of alterations considered to be good, to a model which
allows the generation of good alterations to an unseen set of words is a
challenging task.

In the present work we provide such a model for the English language,
discovered with Inductive Logic Programming (ILP). The model induced
by ILP is a set of Prolog rules. An important aspect of having the model
as rules in Prolog is that, instead of merely being able to classify a given
pair 〈term, candidate〉 as good or bad, we are now able to generate good
alterations for a given word, which is the main goal of this investigation.

Keywords: Inductive Logic Programming application, Query Expansion, Word
alteration generator

1 Introduction and Motivation

Having a search engine return relevant links for an arbitrary query is a complex
task involving the work of several components, most importantly: indexing, query
expansion, matching and ranking.

The indexing component crawls the web and updates and annotates a database
of valid urls. The query expansion component focuses on spell correcting and aug-
menting the query with synonyms, morphological variations and other related
terms. The matching component is given an augmented query and has to find
all the documents in the index that match at least one of the query words. Fi-
nally, the ranking component is given a list of documents that match the query



and ranks them according to their relevance, trying to maximize the Normalized
Discounted Cumulative Gain, NDCG [2], of the results list.

Since the matching component simply provides the ranker with the set of
documents that match a subset of the words in the expanded query, it is impor-
tant that the query expansion component performs well by adding additional
words that are not present in the original query but that are likely to be rel-
evant. For instance, the query ’used automobiles’ may be expanded to ’used
word:(automobiles cars)’, meaning that the words ’automobiles’ and ’cars’ are
equivalent when returning documents to the ranker.

In this paper we consider Term to be a token which may be extended with
another token. Candidate refers to a token which will augment an original token
and Alteration is a 〈Term,Candidate〉 pair that may be used to extend a query.
Using the previous example, the term automobile can be expanded with the
candidate cars, thus producing the alteration 〈automobiles, cars〉.

An important aspect of query expansion is thus to be able to generate good
alterations for certain terms in a query. An alteration is considered good if
it increases the NDCG value of the query. Generating good alterations for an
arbitrary word in a query is not a trivial task. The current approach uses a
range of techniques, from manually supervised lists of alterations to synonyms
extracted from online repositories such as WordNet [1].

In this work we explore a machine learning approach in which we aim to learn
rules that identify common patterns for good alterations. Since the creation of
new good alterations is a costly process, it is our goal to use the identified rules
to generate good candidates for a given term.

From the query expansion component perspective, the aspect of being able to
generate new candidates from the learned rules is more important than predictive
accuracy. An Inductive Logic Programming approach is thus particularly suitable
for this problem as the model an ILP system learns, a set of Prolog rules, can
also be easily used to construct new alterations.

2 Experiments

In this section we describe the whole experimentation procedure, starting from
processing the raw data to learning an ILP model and finally using the model
to construct putative new good alterations.

2.1 Materials

We have gathered from internal resources five data files that were used for these
experiments. The first is an English lexicon consisting of roughly 340,000 words.
The other four files are query sets gathered from Bing search engine users in
Great Britain, which were named Head1, Tail1, Head2, Tail2. The numerical
suffix refers to the period from which the queries were sampled.

Head queries are randomly sampled from the top 100,000 queries performed
by users, whilst Tail queries are randomly sampled from queries which have been
issued less than 500 times during the time period 1 or 2.



Each of the 4 query sets is a tab separated file where each line has the
format Query<tab>Term<tab>Candidate. Previous experimentation has deter-
mined that changing the word Term to Candidate in query Query increases the
overall NDCG value and is, therefore, a good alteration.

In this investigation we are considering query-independent alterations only.
Thus, we processed the four query sets to consider only the 〈Term,Candidate〉
pair. The alteration list was restricted to those in which both Term and Can-
didate occur in the English lexicon. We combined the query sets from the same
period (Head1+Tail1 and Head2+Tail2) into two datasets HT1 and HT2. The
number of positive alterations in these datasets is 6,508 and 5,832, respectively.

Opposing the positive alterations, the negative ones will decrease or main-
tain the NDCG score of a query. Since our original sets do not contain negative
alterations, we have randomly generated them from all the lexicon entries. Con-
sidering there are no more than 10 to 20 good alterations per Term, a randomly
selected pair 〈Term,Candidate〉 is highly likely to be a bad alteration.

We used a ratio of 100 negatives to 1 positive to ensure the rules found
would be specific. To generate the 100 negative examples per positive example,
we fixed the Term to be the same as in the positive example and selected the
100 Candidates randomly from the full English lexicon.

2.2 Problem Modeling

To model this problem we used the features described in Table 1, whose names
should be self explanatory.

Predicate type Background Knowledge Predicates

unary word properties word length/2, num vowels/2, num glides/2,
num consonants/2, is possessive/2

〈word, alteration〉 edit distance/3, len common prefix/3, len common suffix/3,
properties len longest common substr/3, len longest common subseq/3,

is substr/3, is prefix/3, is suffix/3

integer comparison lteq/2, gteq/2
Table 1. Background knowledge predicates

The unary word properties features take a word as input and output an
integer. An important binary feature is the edit distance, also known as the
Levenshtein-distance [3]. The edit distance between two strings is the minimum
number of edits needed to transform one string into the other, with the allowable
edit operations being insertion, deletion, or substitution of a single character.

On a previous experiment we focused on purely linguistic features, looking
at grammatical and lexical (part-of-speech) categories. This, however, did not
produce relevant results, since ILP was attempting to identify ways of express-
ing the relation of the alteration beyond these categories. Stating that altering
”singular to plural” or ”present tense to past tense” is not enough, since there
are many ways to express these relations. As a simple example, one can form a
plural in English by adding ”s”, ”en” or ”es” to the singular form, by changing



the vowel sound of the singular (mutated plurals) or by null affixation (adding
a null morpheme).

Therefore, we opted to focus on features that work at the pure string level,
disregarding more language specific or linguistic information. This also simplifies
the process, limiting the input data to a valid word list of a given language and
not being dependent on any type of linguistic annotation.

So instead of simply looking for general linguistic rules to define good alter-
ations, such as the referred ”singular to plural”, these features will attempt to
look deeper at the way the alteration is being built. This approach allows the
ILP system not to be dependent on linguistic restraints and be free, for example,
to identify specific plural morphemes as good alterations, while ignoring others.

2.3 Rule learning

We have implemented a program to generate the ILP background knowledge file
containing ground facts for all the features of Table 1 applied to all the positive
and negative alterations in our two data sets, HT1 and HT2.

Note that all the predicates in Table 1 are determinate. That is, given the
input, there is only one possible output. This determinism makes the hypothesis
space relatively small and the coverage computation efficient, thus well suited to
ILP systems like Aleph [5] and FOIL [4]. We employed both Aleph 5 and FOIL
6.4, with default settings, using HT1 as training set and HT2 as test set.

We selected the top 2 rules of each system in the training set. Table 2 presents
the rules and respective precision and recall on the training and test sets. An
initial analysis of these results show that the precision and recall in the test set
are identical to the ones in the training set, signalling that the rules generalize
well. Also, Aleph rules tend to be more general and FOIL more specific.

Rule An alteration from Training set Test set
a term A to a candidate B is good if : Precision Recall Precision Recall

1 edit distance(A,B,C), lteq(C, 3), is substr(A,B,1) 98.9% 56.6% 98.4% 55.6%

2 edit distance(A,B,C), lteq(C, 3), 98.5% 86.6% 98.2% 84.9%
len common prefix(A,B,D),
gteq(D,3), is possessive(A,0)

3 edit distance(A,B,C), C≤2, 97.7% 77.5% 97.4% 75.5%
len longest common subseq(A,B,D), D≥2,
is possessive(A,0), num consonants(B,E), E≥1

4 num vowels(B,C), edit distance(A,B,D), 99.4% 59.5% 99.5% 58.3%
len common prefix(A,B,E), D≤E, D≤2, C>D

Table 2. Rules found by ILP. First 2 rules were found by Aleph, last 2 by FOIL.

A further analysis of the positive matches proved to be interesting in the sense
that the rules grouped several linguistic processes. Thus, we were able identify
alterations that fall under specific linguistic rules. The most frequent cases are
alterations that expand singular to plural (”ace-aces”, ”captain-captains”) and



add the possessive clitic -’s (”car-car’s”, ”video-video’s”). But we also note that
these matches are not absolute, meaning that they do not cover all that a singular
to plural or a form possessive rule would.

We observe that, together with the high occurrence of singular to plural and
the formation of the possessive, we also encounter matches with denominal adjec-
tives (”intelligence-intelligent”, ”gnosticism-gnostic”, ”apocalypse-apocalyptic,
”angola-angolan”). Other interesting results extend the lemma of a verb to its
present continuous (”access-accessing”, ”edit-editing”) or to the regular past
tense (”eye-eyed”) or match contractions (”cannot-can’t”). So each rule the
system found is not specific to one phenomenon and covers different linguistic
processes and that is what makes these rules relevant.

The relevance of these rules can therefore be justified by being independent
of any linguistic background. We can, of course, always write this information in
such a way that it would generate alterations based on the word formation rules
of a given language, but by applying these rules, we identify specific occurrences
of the patterns that were matched. Also relevant is the fact that the patterns
that these rules match also allow the quick generation of alterations based on
a simple list of words, instead of being dependent on annotated lexica. To find
alterations with these rules, all that is required is a lexicon of valid words of a
given language. This process will not only find alterations based on morphological
rules, but others that would not necessarily be annotated within a list, such as
orthographical variants (”ann-anne”, ”whisky-whiskey”, ”majorca-mallorca”) or
even, if it is the case, of misspelled words.

2.4 From ILP rules to new alterations

To test the rules found by ILP on the full lexica, we compiled a fresh list of 36
sample words and provided these as terms to the rules of Table 2 so that new
candidates would be generated. The list of sample words compiled attempted to
match lexical and grammatical categories: adjectives, nouns (loan words, singu-
lar, plural, possessive singular, possessive plural) and verbs (present participles,
past tenses, infinitives). We have also selected test words by length, ranging from
two to eight characters. While analyzing the results, a generated alteration was
considered to be relevant if the candidate maintained a semantic approximation
to the term. Due to space restrictions, Table 3 shows only the coverage of one
word category per rule. Not all the alterations are sensible but most are.

Rule Word Candidates

1 financer financer’s,financers,financers’,refinancer,refinancers

2 acrylic acrid,acrolect,acrolith,acromia,acronymic,acrostic,acryl,acrylate,
acrylic’s,acrylics,acrylics’

3 Moldavian moldavia,moldavians

4 pianos’ pianism,pianist,piannas’,piano,piano’s,pianola,pianolas’,pianos
Table 3. Candidates generated from all lexicon for a sample list of words



It was noted that rule behavior is not specific to lexical or grammatical cate-
gories. Word length; however, seems to be important when it comes to generating
new candidates. Lengthier words (i.e. ≥ 5 characters) will return more relevant
alterations than smaller words. This is explained by all rules computing the edit
distance of the current term to a low value (2 or 3). The larger the word, the
more likely it is that an arbitrary string at an edit distance of 1 to 3 will be
an invalid word and thus not belong to the lexicon. It is interesting though,
that neither Aleph nor FOIL captured the constraint on the word length. This
is because the remaining constraints of the rule were enough to discriminate
between the positive and negatives. However, if we were to further increase the
ratio of negatives to positives, the more likely the word length constraint would
be learned by the ILP systems.

3 Conclusions and future work

In this work we showed how ILP was used to learn a model which can generate
good alterations. The learned model has both high predictive accuracy and recall
and, more importantly, has shown to be easily reversed in order to generate
new good alterations. In future work we would attempt lifting the no-context
restriction and consider the neighboring tokens of the query term. Improving the
quality of both rules and generated alterations might pass from manipulating
the lexicon so that it can contain more morphological variations or so that it can
be stripped of specific lexical categories (such as articles, preposition or other
groups of entries that could be considered stop-words).

A more in-depth linguistic analysis would also be of relevance with the gen-
erated data, in which we would attempt to understand the relation between the
rules and the linguistic coverage they support.

Currently we are able to construct the candidates for a given term by run-
ning the rule against the background knowledge file. However, this process takes
about 1 minute of cpu time per term, for all the 4 rules, which limits scalabil-
ity. We should look at the ILP rules as constraints over the good alterations
and, using Constraint Logic Programming techniques and a constructive Prolog
implementation of the predicates in Table 1, we would be able to generate the
alterations in a more efficient way.

References

1. Christiane Fellbaum, editor. WordNet An Electronic Lexical Database. The MIT
Press, Cambridge, MA ; London, May 1998.

2. Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evaluation of IR
techniques. ACM Trans. Inf. Syst., 20:422–446, October 2002.

3. Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals.
Soviet Physics Doklady, 10:707–710, 1966.

4. J. Ross Quinlan and R. Mike Cameron-Jones. Induction of logic programs: Foil and
related systems. New Generation Computing, 13(3&4):287–312, 1995.

5. A. Srinivasan. The Aleph Manual. University of Oxford, 2007.


