
Can ILP Deal with
Incomplete and Vague Structured Knowledge?

Francesca A. Lisi1 and Umberto Straccia2

1 Dipartimento di Informatica, Università degli Studi di Bari “Aldo Moro”, Italy
lisi@di.uniba.it

2 ISTI - CNR, Pisa, Italy
straccia@isti.cnr.it

1 Introduction

Ontologies are currently a preminent source of structured knowledge. The logical
languages known as Description Logics (DLs) [1] play a key role in the design of
ontologies as they are essentially the theoretical counterpart of the Web Ontology
Language OWL 2 3 - the current standard language to represent ontologies - and
its profiles. 4 E.g., DL-Lite [2] is the DL behind the OWL 2 QL profile and is
especially aimed at applications that use very large volumes of instance data, and
where query answering is the most important reasoning task.

Incompleteness and vagueness are inherent properties of knowledge in sev-
eral real world domains. DL-based ontology languages were born to address the
former. Indeed, the Open World Assumption (OWA) holds in DLs. Fuzzy exten-
sions of DLs have been more recently devised to address the latter (see the survey
in [7]). They include, among others, a fuzzy DL-Lite like DL [12] which has been
implemented in the SoftFacts system 5.

In this abstract, we sketch the results of our preliminary investigation of the
issue of whether ILP can deal with incomplete and vague structured knowledge.
More precisely, we provide the ingredients for learning fuzzy DL inclusion axioms
with ILP. The resulting method adapts known results in ILP concerning the
induction of crisp rules, notably FOIL [8], to the novel context of ontologies.

The abstract is organized as follows. Section 2 introduces fuzzy DLs. Section
3 describes our preliminary contribution to the problem in hand, also by means
of an illustrative example. Section 4 concludes the paper with final remarks and
comparison with related work.

2 Fuzzy Description Logics

For computational reasons, the logic we adopt is based on a fuzzy extension of
the DL-Lite DL without negation [12]. It supports at the intentional level unary
relations (called concepts) and binary relations (called roles), while supports n-
ary relations (relational tables) at the extensional level.

3 http://www.w3.org/TR/2009/REC-owl2-overview-20091027/
4 http://www.w3.org/TR/owl2-profiles/.
5 See, http://www.straccia.info/software/SoftFacts/SoftFacts.html

Formally, a knowledge base K = 〈F ,O,A〉 consists of a facts component F ,
an ontology component O and an abstraction component A. Information can be
retrieved from K by means of an appropriate query language.

In order to deal with vagueness, Gödel logic is adopted, where

a⊗b = min(a, b), a⊕b = max(a, b), 	 a =

{
1 if a 6 b

b otherwise
, and a⇒ b =

{
1 if a = 0

0 otherwise
.

For a detailed account of the semantics, see [11].

Facts Component. F is a finite set of expressions of the form

R(c1, . . . , cn)[s] , (1)

where R is an n-ary relation, every ci is a constant, and s is a degree of truth
(or score) in [0, 1] indicating to which extent the tuple 〈c1, . . . , cn〉 is an instance
of relation R. We may omit the score component and in such case the value 1 is
assumed. Facts are stored in a relational database.

Ontology Component. O is a finite set of inclusion axioms having the form

Rl1 u . . . uRlm v Rr , (2)

where m > 1, all Rli and Rr have the same arity and each Rli is a so-called left-
hand relation and Rr is a right-hand relation. We assume that relations occurring
in F do not occur in inclusion axioms (so, we do not allow that database relation
names occur in O). The intuitive semantics is that if a tuple c is instance of each
relation Rli to degree si then c is instance of Rr to degree min(s1, . . . , sm).

The exact syntax of the relations appearing on the left-hand and right-hand
side of inclusion axioms is specified below:

Rl −→ A | R[i1, i2]
Rr −→ A | R[i1, i2] | ∃R.A

(3)

where A is an atomic concept and R is a role with 1 6 i1, i2 6 2. Here R[i1, i2]
is the projection of the relation R on the columns i1, i2 (the order of the indexes
matters). Hence, R[i1, i2] has arity 2. Additionally, ∃R.A is a so-called quali-
fied existential quantification on roles which corresponds to the FOL formula
∃y.R(x, y) ∧A(y) where ∧ is interpreted as the t-norm ⊗ in the Gödel logic.

Abstraction Component. A is a finite set of abstraction statements of the form

R 7→ (c1, . . . , cn)[cscore].sql , (4)

where sql is a SQL statement returning n-ary tuples 〈c1, . . . , cn〉 (n 6 2) with
score determined by the cscore column. The tuples have to be ranked in decreasing
order of score and, as for the fact component, we assume that there cannot be
two records 〈c, s1〉 and 〈c, s2〉 in the result set of sql with s1 6= s2 (if there are,
then we remove the one with the lower score). The score cscore may be omitted
and in that case the score 1 is assumed for the tuples. We assume that R occurs
in O, while all of the relational tables occurring in the SQL statement occur in
F . Finally, we assume that there is at most one abstraction statement for each
abstract relational symbol R.

Query Language. The query language enables the formulation of conjunctive
queries with a scoring function to rank the answers. More precisely, a ranking
query is of the form

q(x)[s] ← ∃y R1(z1)[s1], . . . , Rl(zl)[sl],
OrderBy(s = f(s1, . . . , sl, p1(z′1), . . . , ph(z′h))

(5)

where

1. q is an n-ary relation, every Ri is a ni-ary relation (1 6 ni 6 2). Ri(zi) may also be
of the form (z 6 v), (z < v), (z > v), (z > v), (z = v), (z 6= v), where z is a variable,
v is a value of the appropriate concrete domain;

2. x are the distinguished variables.
3. y are existentially quantified variables called the non-distinguished variables. We

omit to write ∃y when y is clear from the context;
4. zi, z

′
j are tuples of constants or variables in x or y;

5. s, s1, . . . , sl are distinct variables and different from those in x and y;
6. pj is an nj-ary fuzzy predicate assigning a score pj(cj) ∈ [0, 1] to each nj-ary tuple

cj of constants.
7. f is a scoring function f : ([0, 1])l+h → [0, 1], which combines the scores of the l

relations Ri(c
′
i) and the n fuzzy predicates pj(c

′′
j) into an overall score s to be

assigned to q(c).

We call q(x)[s] its head, ∃y.R1(z1)[s1], . . . , Rl(zl)[sl] its body and OrderBy(s =
f(s1, . . . , sl, p1(z′1), . . . , ph(z′h)) the scoring atom. We also allow the scores [s], [s1],
. . . , [sl] and the scoring atom to be omitted. In this case we assume the value 1
for si and s instead. The informal meaning of such a query is: if zi is an instance
of Ri to degree at least or equal to si, then x is an instance of q to degree at
least or equal to s, where s has been determined by the scoring atom.

The answer set ansK(q) over K of a query q is the set of tuples 〈t, s〉 such that
K |= q(t)[s] with s > 0 (informally, t satisfies the query to non-zero degree s)
and the score s is as high as possible, i.e. if 〈t, s〉 ∈ ansK(q) then (i) K 6|= q(t)[s′]
for any s′ > s; and (ii) there cannot be another 〈t, s′〉 ∈ ansK(q) with s > s′.

3 ILP for Learning Fuzzy DL Inclusion Axioms

In this section we consider a learning problem where:

– the target concept H is a DL-Lite atomic concept;
– the background theory K is a DL-Lite like knowledge base 〈F ,O,A〉 of the

form described in Section 2;
– the training set E is a collection of fuzzy DL-Lite like facts of the form (1)

and labeled as either positive or negative examples for H. We assume that
F ∩ E = ∅;

– the target theory H is a set of inclusion axioms of the form

B v H (6)

where H is an atomic concept, B = C1 u . . .uCm, and each concept Ci has
syntax

C −→ A | ∃R.A | ∃R.> . (7)

We now show how we may learn inclusion axioms of the form (6). To this
aim, we define for C 6= H

IILP |= C(t) iff K ∪ E |= C(t)[s] and s > 0 . (8)

That is, we write IILP |= C(t) iff it can be inferred from K and E that t is an
instance of concept C to a non-zero degree.

Now, in order to account for multiple fuzzy instantiations of fuzzy predicates
occurring in the inclusion axioms of interest to us, we propose the following
formula for computing the confidence degree of an inclusion axiom:

cf(B v H) =

∑
t∈P B(t)⇒ H(t)

|D|
(9)

where

– P = {t | IILP |= Ci(t) and H(t)[s] ∈ E+}, i.e. P is the set of instances for which
the implication covers a positive example;

– D = {t | IILP |= Ci(t) and H(t)[s] ∈ E}, i.e. D is the set of instances for which the
implication covers an example (either positive or negative);

– B(t)⇒ H(t) denotes the degree to which the implication holds for the instance t;

– B(t) = min(s1, . . . , sn), with K ∪ E |= Ci(t)[si];

– H(t) = s with H(t)[s] ∈ E .

Clearly, the more positive instances supporting the inclusion axiom, the higher
the confidence degree of the axiom.

Note that the confidence score can be determined easily by submitting appro-
priate queries via the query language described in Sect. 2. More precisely, proving
the fuzzy entailment in (8) for each Ci is equivalent to answering a unique rank-
ing query whose body is the conjunction of the relations Rl resulting from the
transformation of Ci’s into FOL predicates and whose score s is given by the
minimum between sl’s.

For illustrative purposes we consider the following case involving the classifi-
cation of hotels as good ones. We assume to have a background theory K with a
relational database F storing facts such as

HotelTable
id rank noRooms

h1 3 21
h2 5 123
h3 4 95

RoomTable
id price roomType hotel

r1 60 single h1
r2 90 double h1
r3 80 single h2
r4 120 double h2
r5 70 single h3
r6 90 double h3

Tower
id

t1

Park
id

p1
p2

DistanceTable
id from to time

d1 h1 t1 10
d2 h2 p1 15
d3 h3 p2 5

an ontology O 6 encompassing the following inclusion axioms

Park v Attraction , Tower v Attraction , Attraction v Site

6 http://donghee.info/research/SHSS/ObjectiveConceptsOntology(OCO).html.

ls(x; a, b) =

1 if x 6 a

0 if x > b

(b− x)/(b− a) if x ∈ [a, b]

Fig. 1. Left shoulder function ls(x; a, b).

and a set A of abstraction statements such as:

Hotel 7→ (h.id). SELECT h.id
FROM HotelTable h

cheapPrice 7→ (h.id, r.price)[score]. SELECT h.id, r.price, cheap(r.price) AS score
FROM HotelTable h, RoomTable r
WHERE h.id = r.hotel
ORDER BY score

closeTo 7→ (from, to)[score]. SELECT d.from, d.to closedistance(d.time) AS score
FROM DistanceTable d
ORDER BY score

where cheap(p) is a function determining how cheap a hotel room is given its
price, modelled as e.g. a so-called left-shoulder function (defined in Figure 1). We
set cheap(p) = ls(p; 50, 100), while closedistance(d) = ls(d; 5, 25).

Assume now that our target concept H is GoodHotel, and that

– E+ = {GoodHotel+(h1)[0.6], GoodHotel+(h2)[0.8]}, while E− = {GoodHotel−(h3)[0.4]};
– GoodHotel+ v GoodHotel and GoodHotel− v GoodHotel occur in K.

As illustrative example, we compute the confidence degree of

r : Hotel u ∃cheapPrice.> u ∃closeTo.Attraction v GoodHotel

i.e., a good hotel is one having a cheap price and close to an attraction. Now, it
can be verified that for K′ = K ∪ E

1. The query

q(h)[s]← GoodHotel
+
(h), cheapPrice(h, p)[s1], closeTo(h, a)[s2], Attraction(a), s = min(s1, s2)

has answer set ansK′(qP) = {(h1, 0.75), (h2, 0.4)} over K′;
2. The query

q(h)[s]← GoodHotel(h), cheapPrice(h, p)[s1], closeTo(h, a)[s2], Attraction(a), s = min(s1, s2)

has answer set ansK′(qD) = {(h1, 0.75), (h2, 0.4), (h3, 0.6)} over K′;
3. Therefore, according to (9), P = {h1, h2}, while D = {h1, h2, h3};
4. As a consequence,

cf(r) =
0.75⇒ 0.6 + 0.4⇒ 0.8

3
=

0.6 + 1.0

3
= 0.5333 .

4 Final remarks

In this abstract we have briefly presented the core ingredients for inducing on-
tology inclusion axioms within the KR framework of a fuzzy DL-Lite like DL.
These ingredients can be used to extend FOIL in a twofold direction: from crisp to
fuzzy and from rules to inclusion axioms. Related FOIL-like algorithms reported
in [10,3,9] can only learn fuzzy rules. The formal study of fuzzy ILP contributed
by [5] is also relevant but less promising than our proposal in practice. Close to
our application domain, [4] faces the problem of inducing equivalence axioms in
a fragment of OWL corresponding to the ALC DL. Last, the work reported in [6]
is based on an ad-hoc translation of fuzzy Lukasiewicz ALC DL constructs into
LP and then uses a conventional ILP method to lean rules.

References

1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, edi-
tors. The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, 2003.

2. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Data
complexity of query answering in description logics. In P. Doherty, J. Mylopoulos,
and C. A. Welty, editors, Proc. of the Tenth Int. Conf. on Principles of Knowledge
Representation and Reasoning (KR-06), pages 260–270, 2006.

3. M. Drobics, U. Bodenhofer, and E.-P. Klement. FS-FOIL: an inductive learning
method for extracting interpretable fuzzy descriptions. Int. J. Approximate Rea-
soning, 32(2-3):131–152, 2003.

4. S. Hellmann, J. Lehmann, and S. Auer. Learning of OWL Class Descriptions on
Very Large Knowledge Bases. Int. J. Semantic Web and Information Systems,
5(2):25–48, 2009.

5. T. Horváth and P. Vojtás. Induction of fuzzy and annotated logic programs. In
S. Muggleton, R. P. Otero, and A. Tamaddoni-Nezhad, editors, Inductive Logic
Programming, volume 4455 of LNCS, pages 260–274. Springer, 2007.

6. S. Konstantopoulos and A. Charalambidis. Formulating description logic learning as
an inductive logic programming task. In Proceedings of the 19th IEEE International
Conference on Fuzzy Systems (FUZZ-IEEE 2010), pages 1–7. IEEE Press, 2010.

7. T. Lukasiewicz and U. Straccia. Managing uncertainty and vagueness in description
logics for the semantic web. Journal of Web Semantics, 6:291–308, 2008.

8. J. R. Quinlan. Learning logical definitions from relations. Machine Learning, 5:239–
266, 1990.

9. M. Serrurier and H. Prade. Improving expressivity of inductive logic programming
by learning different kinds of fuzzy rules. Soft Computing, 11(5):459–466, 2007.

10. D. Shibata, N. Inuzuka, S. Kato, T. Matsui, and H. Itoh. An induction algorithm
based on fuzzy logic programming. In N. Zhong and L. Zhou, editors, Methodologies
for Knowledge Discovery and Data Mining, volume 1574 of LNCS, pages 268–273.
Springer, 1999.

11. U. Straccia. Softfacts: a top-k retrieval engine for a tractable description logic
accessing relational databases. Technical report, 2009.

12. U. Straccia. SoftFacts: A top-k retrieval engine for ontology mediated access to
relational databases. In Proc. of the 2010 IEEE Int. Conf. on Systems, Man and
Cybernetics (SMC-10), pages 4115–4122. IEEE Press, 2010.

