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Abstract. Statistical abduction is an attempt to define a probability
distribution over explanations derived by abduction and to evaluate them
using their probabilities. In statistical abduction, deterministic knowl-
edge like rules and facts are described as logic formulas. However non-
deterministic knowledge like preference and frequency seems difficult to
represent as logic. Bayesian inference can reflect such knowledge on a
prior and variational Bayes (VB) is known as an approximation method
for it. In this paper, we propose VB for logic-based probabilistic models
and show that our proposed method is efficient in evaluating abductive
explanations about failure in a logic circuit and a metabolic pathway.

1 Introduction

Abduction is one of logical inference to find explanations E from knowledge-
base KB for an observation O such that KB ∧ E ` O and KB ∧ E is con-
sistent. Statistical abduction defines a probability distribution over explanations
and attempts to evaluate them by their probabilities. A couple of frameworks
for statistical abduction have been proposed [1, 2] but they have restrictions
on KB to realize efficient probability computation and learning. To relax these
restrictions, the BO-EM algorithm which is an EM algorithm for propositional
logic-based probabilistic models (PBPMs) was proposed [3]. A PBPM p(b|θ) is a
joint distribution over boolean random variables b and defines probabilities for
any boolean formulas. Probabilistic events (observations O) in a PBPM p(b|θ)
are described as boolean formulas (explanations E) and a parameter θ can be
learned by BO-EM in a dynamic programming manner on a BDD representing
E. In statistical abduction, deterministic knowledge like rules and facts is de-
scribed by logic as KB. However, non-deterministic knowledge like preference
and frequency is difficult to represent by logic. To explicitly reflect such knowl-
edge, Bayesian inference which is a method for statistical inference is useful.
It assumes θ as a random variable and introduces a prior p(θ|α) corresponding
to preference or frequency of θ. Then, it computes a posterior p(θ|O,α) which
is a modified distribution by observations O. However the computation of the
posterior requires complex summation and integration. Variational Bayes (VB)
inference is an deterministic approximation of Bayesian inference and the VB-
EM algorithm [4] is known as an EM like iterative computation for VB.



In this paper, we propose a VB-EM algorithm for PBPMs which is a gener-
alization of the BO-EM algorithm for VB. We show that the complexity of our
method is the same as BO-EM and also show that it runs efficiently in evaluating
abductive explanations for a logic circuit and a metabolic pathway.

2 Preliminaries

2.1 Propositional logic based probabilistic models (PBPMs)

Let θj ≡{θjv}
Mj

v=1 (0≤ θjv ≤ 1,
∑Mj

v=1 θjv =1) be a parameter of a categorical
distribution Cat (θj) corresponding to an Mj-sided dice. Also let xi ≡{xiv}Ni

v=1

(xiv ∈ {0, 1},
∑Ni

v=1 xiv = 1) be a 1-of-Ni expression of a value drawn from
Cat (θji

) (1 ≤ ji ≤ M). We use vi to denote v such that xiv = 1. Then, the
probability of xi is computed by p(xi | θji) =

∏Ni

v=1 θxiv
jiv

= θjivi . Let x and θ be
{xi}N

i=1 and {θj}M
j=1, respectively. Then, the probability of x is computed by

p(x | θ)=
M∏

j=1

Mj∏
v=1

θ
σjv(x)
jv , σjv(x)≡

∑
i:ji=j

xiv.

Let f be a function of x. Then, a boolean function fy(x) ≡ “f(x)=y” corre-
sponds to a probabilistic event and its probability is computed as p(fy | θ) =∑

x fy(x)p(x | θ). We use “xi =v” to denote xiv =1 and xiv′ =0 (v′ 6=v). Then,
fy can be represented as a boolean formula as follows:

fy =
∨

x:f(x)=y

∧
xi∈x

“xi =vi”.

Probabilistic events “xi =v” and “xi =v′” (v 6= v′) depend on each other. How-
ever, they can be described as a boolean formula of independent boolean random
variables b≡{biv | biv ≡“xi≤v | xi≥v”, 1≤ i≤N, 1≤v<Ni} as follows [3]:

“xi = v” ≡

{
biv ∧

∧v−1
v′=1 ¬biv′ 1≤v<Ni∧v−1

v′=1 ¬biv′ v=Ni

,

where the probability of biv is defined as follows:

p(biv|θ) ≡
θjiv

φjiv
, p(¬biv|θ) ≡

φji,v+1

φjiv
, φjv ≡

Mj∑
v′=v

θjv.

Then, the probability of “xi =v” (1≤v<Ni) is computed by

p(“xi =v” | θ) = p(biv | θ)
j−1∏
v′=1

p(¬biv′ | θ)

=
θjiv

φjiv

v−1∏
v′=1

φji,v′+1

φjiv′

= θjiv (= p(xi =v | θ)) .



Consequently, p(x | θ) can be computed by p(b | θ). The propositionalized distri-
bution p(b | θ) is called a propositional logic-based probabilistic model (PBPM)
for p(x | θ) and defines probabilities for any boolean formulas in b.

2.2 Maximum likelihood estimation and the EM algorithm

We assume that a probabilistic event fy is sampled from p(fy, x | θ) and that
x and θ are unobservable. Maximum likelihood estimation (MLE) estimates the
parameter θ as θ̂≡argmaxθ p(fy | θ). When there are hidden variables like x, it
is popular to use the EM algorithm for MLE. It iterates the following update:

θ
(t+1)
jv =

E[σjv(x)]p(x|fy,θ(t))∑Mj

v′=1 E[σjv′(x)]p(x|fy,θ(t))

, (1)

but it only converges to a local maximum of p(fy | θ). The above expectations
E[σiv(x)]p(x|fy,θ(t)) can be computed using the PBPM p(fy, b | θ). The BO-EM
algorithm which is an EM algorithm for PBPMs computes them on a BDD
representing fy in time linear in the BDD size [3].

2.3 Variational Bayes inference and the VB-EM algorithm

Whereas MLE considers a parameter θ as an unknown constant and estimates
it as what maximizes p(fy | θ), Bayesian inference considers θ as a random
variable and computes a distribution of θ given fy. A prior distribution p(θ | α)
is given beforehand and a posterior distribution p(θ | fy, α) is computed by

p(θ | fy, α)=p(fy | θ)p(θ | α)/p(fy | α), p(fy | α)=
∑

x

∫
p(fy, x | θ)p(θ | α)dθ.

While the number of possible x is too huge, it is difficult to compute the above
posterior. The variational Bayes (VB) inference is known as a deterministic
approximation of Bayesian inference. It approximates a joint posterior p(x, θ |
fy, α) by a variational distribution q(x, θ) = q(x)q(θ). Using q(x) and q(θ), the
log marginal likelihood ln p(fy | α) can be obtained as a sum of a variational free
energy (VFE) F[q] and the Kullback-Leibler (KL) divergence KL(q||p) as follows:

ln p(fy | α) =
∑

x

∫
q(x)q(θ) ln p(fy | α)dθ

=
∑

x

∫
q(x)q(θ) ln

p(x, fy, θ | α)q(x)q(θ)
p(x, θ | fy, α)q(x)q(θ)

dθ

= F[q] + KL(q||p) ,

where

F[q]=
∑

x

∫
q(x)q(θ) ln

p(x, fy, θ|α)
q(x)q(θ)

dθ, KL(q||p)=
∑

x

∫
q(x)q(θ) ln

q(x)q(θ)
p(x, θ|fy, α)

dθ.



Since KL(q||p) is non-negative, F[q] gives a lower bound of ln p(fy | α). Maximiz-
ing F[q] with respect to q results in minimizing KL(q||p). The variational Bayes
EM (VB-EM) algorithm is an EM like iterative algorithm for VB inference [4].
It attempts to maximize F[q] by iterating the following updates:

q(t+1)(x) ∝ exp
(
E[ln p(x, fy | θ)]q(t)(θ)

)
, (2)

q(t+1)(θ) ∝ p(θ | α)exp
(
E[ln p(x, fy | θ)]q(t+1)(x)

)
. (3)

The above updates are repeated until F[q] converges. When converged, the VB-
EM algorithm outputs q(θ) as an approximation of the posterior p(θ | fy, α).

3 Proposed method

3.1 Bayesian inference for PBPMs

Let αk ≡ {αkv}Lk
v=1 (αkv > 0) be a parameter of a Dirichlet distribution

Dir (αk). We assume θj is sampled from Dir
(
αkj

)
. Then, the prior distribution

p(θ | α) (α≡{αk}L
k=1) is represented as a product of Dirichlet distributions:

p(θ|α)=
M∏

j=1

p(θj |αkj ), p(θj |αk)=
1

Z (αk)

Mj∏
v=1

θαkv−1
jv , Z (αk)≡

∏Lk

v=1 Γ(αkv)

Γ
(∑Lk

v=1 αkv

) .

Because a Dirichlet distribution is a conjugate prior of a categorical distribution,
the posterior p(θ | fy, α) becomes a sum of products of Dirichlet distributions:

p(θ | fy, α) ∝
∑

x

fy(x)
M∏

j=1

1
Z

(
αkj

) Mj∏
v=1

θ
αkjv+σjv(x)−1

jv .

3.2 VB-EM algorithm for PBPMs

We propose a VB-EM algorithm for PBPMs. By substituting the definitions
of p(x | θ) and p(θ | α) into (2) and (3), we get the following updates:

q(t+1)(x)∝
N∏

i=1

Ni∏
v=1

(
θ̃
(t+1)
iv

)σiv(x)

, q(t+1)(θ)∝
M∏

j=1

1

Z
(
α̃

(t+1)
j

) Mj∏
v=1

θ
α̃

(t+1)
jv −1

jv ,

where θ̃
(t+1)
iv and α̃

(t+1)
kv are defined as follows:

θ̃
(t+1)
iv ≡exp

(
Ψ

(
α̃

(t)
kjv

)
−Ψ

(
Mi∑

v′=1

α̃
(t)
kjv′

))
, α̃

(t+1)
jv ≡αkjv + E[σjv(x)]q(t+1)(x),

where Ψ(x) is the digamma function defined by Ψ(x)≡ d
dx ln Γ(x). The point here

is that the above expectation E[σij(x)]q(k+1)(x) can be computed by substituting



θ̃
(t+1)
iv into θ

(t)
iv in the computation of E[σjv(x)]p(x|fy,θ(t)) in (1). As mentioned

in Section 2, the BO-EM algorithm [3] computes E[σjv(x)]p(x|fy,θ(t)) by using
p(fy, b | θ) which is a PBPM for p(fy, x | θ) and a BDD which represents fy in
linear time to the BDD size. Consequently, the VB-EM algorithm for PBPMs
can also be executed on the BDD in the same time and space complexity as the
BO-EM algorithm. Due to space limitations, the detail of our proposed algorithm
is omitted.

4 Experiments

4.1 Artificial problem: diagnosis for failure in a logic circuit

We apply our method to a diagnosis for a 3-bit adder circuit involving error
gates [1, 3]. An error gate is stochastically stuck at 0 or 1. The task is to find error
gates in the circuit from observations that pairs of input and output values. The
previous approach [3] learns probabilities of gates being stuck by the BO-EM
algorithm and predicts where error gates are by using their probabilities.

In this experiment, we assume the average rate of a gate being normal, stuck
at 0 and stuck at 1 is given as non-deterministic knowledge. To reflect the knowl-
edge in prediction, we use our proposed method and obtain gate probabilities.
We compare the prediction accuracy of our approach with that of the previ-
ous approach. The left side of Fig. 1 respectively shows precision, recall and
F-measure of the previous approach and the right shows ours. These quanti-
ties are computed by predicting error gates in 10,000 randomly-generated 3-bit
adder circuits while changing the number of observations N = 10, 50, 100. The
result shows that our approach achieves higher F-measure value than the previ-
ous one and also shows that introducing non-deterministic knowledge is efficient
in prediction.

4.2 Real problem: hypotheses finding in a metabolic pathway

Inoue et al. applied statistical abduction to find and rank explanations for
a metabolic pathway data [3]. According to them there are two important re-
actions which tend to be inhibited and the knowledge is used to evaluate their
ranking result. To explicitly reflect such knowledge in ranking, we apply our
proposed method to ranking 66 explanations derived by them. Fig. 2 shows that
explanations which have top 20 high probabilities. 22 out of 66 explanations are
considered good because they include the above mentioned two important reac-
tions as inhibited. The result shows that 16 out of top 20 explanations are good
and also that our method can explicitly reflect non-deterministic knowledge in
ranking explanations.

5 Conclusions and Related work

We propose a variational Bayes inference for PBPMs. In the context of
Bayesian inference for statistical abduction, deterministic knowledge is described
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as logic formulas whereas non-deterministic knowledge is represented as a prior
distribution. We apply our proposed method to a diagnosis for failure in a logic
circuit and to evaluating explanations for a metabolic pathway data. The ex-
perimental results show that introducing non-deterministic knowledge as a prior
makes both of prediction and ranking results better.

PRISM [2] is a probabilistic extension of Prolog and variational Bayes in-
ference for it has already proposed [5]. However, PRISM has the exclusiveness
condition for explanations to realize efficient probability computation. Our pro-
posed method can eliminate the exclusiveness condition because it can deal with
any boolean formulas.

ProbLog [6] which is another probabilistic extension of Prolog also employs
a BDD-based parameter learning algorithm [7]. However, variational Bayesian
inference for ProbLog has not yet been proposed to our knowledge.
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