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1 Introduction

To explain a given observation O, explanatory induction seeks a hypothesis H
accommodated to the existing background knowledge B in such a way that

BAHEO, and (1)
B A H is consistent. (2)

Often, H is constructed with some restricted vocabulary I called a bias. A
formula H is called a hypothesis for the inductive problem (B, 0) or (B, O, I).

Traditionally, H has been computed as a set of clauses, which is also in-
terpreted as a formula in conjunctive normal form (CNF). CNF is useful in
knowledge representation in AI because a CNF formula represents a set of rules
and constraints, and each clause is regarded as a declarative statement of knowl-
edge that holds in a domain. On the other hand, a formula in disjunctive normal
form (DNF) is a conjunction of disjunctions of literals. A DNF formula can be
regarded as a set of (partial) interpretations, and DNF has been used in the
domains of logic circuit design and machine learning. However, most previous
works of DNF hypotheses in machine learning have been done in the context of
computational learning theories, and no previous results can be directly applied
to explanatory induction in full clausal theories.

In this paper, we investigate an inductive framework which outputs hypothe-
ses in DNF instead of CNF. We will show logical foundations for this framework
and procedures to compute DNF hypotheses in explanatory induction. Abduction
also infers hypotheses satisfying (1) and (2) in the form of sets (or conjunctions)
of literals, which can be regarded as DNF hypotheses with single disjuncts. Our
setting to compute DNF hypotheses is related to model-based inductive reason-
ing, in which propositional reasoning methods such as SAT techniques and prime
implicant computation can be utilized. Then, enumeration of all DNF hypotheses
can be more systematically performed than that of all CNF hypotheses.

2 Preliminaries

In this extended abstract, we mainly consider a propositional language, but
will extend the work to the first-order case in Section 5. Given the set V' of
propositional variables, an assignment (or interpretation) I to V is a vector



in {0,1}", which can be identified with a subset I, of V by interpreting the
elements of I; as true and those of V' \ I; as false.

A (propositional) formula is constructed from V using the connectives V, A,
-, = and <. An assignment [ satisfies a formula ¢ if ¢ evaluates to true under
I, and is called a model of . The set of all models of ¢ is denoted as M ().
A formula ¢ is valid if ¢ is true under any assignment, and is unsatisfiable if ¢
is false under any assignment, i.e., M(p) = ). For formulas ¢ and 1, we write
v Evif M(p) C M(3). In this case, ¢ is said to be a generalization of 1, and
¥ is weaker than (or equal to) ¢. Note that ¢ = ¢ iff ¢ — 4 is valid.

A literal is either a propositional variable v; € V or its negation —wv;. A term is
a conjunction or a disjunction of literals; a conjunction is called a monomial, and
a disjunction is called a clause. Terms are also considered as sets of literals. Term
Ty covers (or subsumes) term Ty if Ty C Ty. A formula is in disjunctive normal
form (DNF) if it is a disjunction of monomials. A formula is in conjunctive
normal form (CNF) if it is a conjunction of clauses. A DNF (resp. CNF) formula
¢ (theory-)subsumes a DNF (resp. CNF) formula v if, for any term 75 € v, there
exists a term T € ¢ such that T} covers T5.

An implicant of a formula ¢ is a monomial C' such that C — ¢ is valid,
ie., C E ¢. An implicant C of ¢ is prime iff for every proper subset S C C' it
holds that S is not an implicant of ¢. Then, a prime implicant of ¢ is a weakest
implicant of . Similarly an implicate of ¢ is a clause D such that ¢ — D is valid,
ie.,, ¢ = D. Prime implicates are defined in the same way as prime implicants.

The next property is important: If Cq,...,C,, are implicants of a formula
o, then C; ECyV---VC, E ¢ forany i = 1,...,n. That is, a DNF formula
C1V---V (), is a weaker generalization of ¢ than each implicant C; of .

Proposition 2.1. The disjunction §* of prime implicants of a formula ¢ is
equivalent to p, i.e., 0" <> ¢ is valid. Hence, 6* is a weakest generalization of .

3 DNF Hypotheses

We here consider an inductive problem (B, O) in Section 1, where B is a back-
ground theory and O is an observation. Here, the inductive bias I" is set to the
representation language itself, but we will allow any bias I" in Section 4. It is
also assumed that B and O are CNF formulas such that B A O is consistent;
otherwise O cannot be explained. In this case, the next property holds.

Proposition 3.1. (B — O) is a weakest hypothesis for (B, O).

The weakest hypothesis H* = (B — O) is called the (bottommost) bottom
theory. Any ILP method based on inverse entailment (IE) [6,9, 3] also constructs
some bottom theory L (B, O) that satisfies 1 (B,O) = H*. For example, Progol
[6] searches a hypothesis that subsumes the bottom clause, and CF-induction [3]
starts from the characteristic clauses instead of the bottom clause. In IE, the
relation (1) is converted to B A =O = —H, and consequences CC of B A =0
are computed in CNF. To get a CNF hypothesis H from the CNF formula CC,



it is necessary to convert a DNF formula -CC' into CNF (distribution), which
is expensive in general [9]. Moreover, the generalization task to obtain a CNF
formula H from L(B,0) such that H = 1(B,0O) is achieved in various ways
[9, 3]. To avoid those computational problems in explanatory induction, we take
another approach that constructs DNF hypotheses instead of computing CNF
hypotheses, and will show two methods for their computation.

3.1 Model-based Approach

A set M of (partial) models can be identified with a DNF formula daq by dpm =
VIGM(/\I:I(M):truel A /\l:I(l):false -l). For H* = (B — 0) = (=B V O), the
disjunction dg+ of all models in M (=B V O) is thus in DNF, and is equivalent to
H*. Hence, any subdisjunction of g« is a generalization of H*. Then, a possible
way to compute a DNF hypothesis H is to select a set S of models of =BV O, i.e.,
S C M(=BV 0). The disjunction Ds = \/;.g I is in DNF, and is a hypothesis
provided that B A Dg is consistent, i.e., M(B A Dg) # (. By M(Dg) = S,
M(BADg) = M(B)NM(Dg) = M(B)NS # 0. By assumption, M(B) # 0.
Then, we must have M (S) # (). Hence, a naive (non-deterministic) model-based
procedure to compute DNF hypotheses, MB-DNF(B, O), is obtained as follows:

1. Let M = M(—=BV O);

2. Select a non-empty subset S of M such that M (B) NS # 0 as follows;
(a) Identify D =M NM(B)=M(BAO);
(b) If D =0, then output “No solution”;
(c) Else, select any set S such that S C M and SND #

3. Output the disjunction of the elements of S as a hypothesis.

Model computation in Steps 1 and 2(a) can be done by a model enumeration
procedure based on efficient modern SAT techniques, e.g., [4].

Proposition 3.2 (Soundness and Completeness of MB-DNF).

(1) If MB-DNF(B, O) returns a formula @, then ¢ is a hypothesis for (B, O).

(2) For any hypothesis H for (B,0), there is a DNF formula ¢ obtainable from
MB-DNF(B, O) such that M(p) = M(H).

Ezample 3.1. Suppose V' = {p,q} and consider B = —p and O = ¢q. Then
M = M(-BVO)=MpVaq = {{p}{e¢}.{p,a}}. Also D = M(BAO) =
M(~p A q) = {{g}}. We can choose any set from: Sy = {{g}}, 5> = {{a}, {p}},
S3 = {{¢},{p,q}}, and Sy = M. These sets form DNF hypotheses: p; = (-pAq),
p2=(PAq) VPN, p3=("PAqV(pAg),and ps = (-pAq)V (pA—q)V
(p A q). Note that the last three DNF formulas are respectively equivalent to the
formulas: Ho = (—p <> q), H3 = ¢, and Hy = (p V q).

3.2 Prime Implicant-based Approach

Although MB-DNF(B, O) is correct, we must compute M (—~BVO) and M (BAO)
in the complete form, i.e., assigning true/false to all variables in V', which are not
feasible for a large B with many propositional variables. It is thus desirable to
have a set of partial models of =BV O which can replace M (-BV O) at Step 1.



For any formula ¢, we denote the set of its prime implicants as PI(y). Instead
of computing M (=B V O), the next procedure computes PI(—BV O). Since each
prime implicant is a weakest implicant of =B V O, any disjunction 7 of prime
implicants can be a hypothesis provided that B A 7 is consistent. Since the
consistency condition can be transformed to 7 & —B, we need to check whether
7 is not an implicant of =B. Hence, a (non-deterministic) Pl-based procedure to
compute DNF hypotheses, PI-DNF(B, O), is obtained as follows:

1. Let P = PI(-BV O);
2. Select a non-empty subset S of P such that S  PI(—B) as follows;

(a) Identify N' =P\ PI(—B);

(b) If N =0, then output “No solution”;

(c) Else, select any set S such that S C P and SNN # ;
3. Output the disjunction of the elements of S as a hypothesis.

Prime implicants in Steps 1 and 2(a) can be computed by some procedures in the
literature, e.g., Tison’s consensus method and its variants [5]. Weak completeness
of the procedure holds by Proposition 2.1: For any hypothesis H for (B, O), there
is a DNF formula 7 obtainable from PI-DNF(B, O) such that 7 is weaker than
or equal to H. In fact, we have a stronger completeness as follows.

Proposition 3.3 (Soundness and Completeness of PI-DNF).

(1) If PI-DNF(B, O) returns a formula 7, then 7 is a hypothesis for (B, O).
(2) For any DNF hypothesis H for (B, 0), there is a DNF formula m obtainable
from PI-DNF(B, O) such that 7 theory-subsumes H.

Ezample 3.2. Suppose the same inductive problem (B, O) as Example 3.1, i.e.,
B =-pand O =q. Then P = PI(-BVO) = {p,q}, and PI(-B) = {p}. Hence
N =P\ PI(-B) = {q}. We can choose any set from: T3 = {¢} and Tp = P.
These sets form DNF hypotheses: m; = ¢ and 72 = (p V ¢q). Note that m = Hj
and mo = Hy in Example 3.1, and that 7 covers ¢; and g covers Ho.

As seen in the last example, PI-DNF(B, O) generally outputs DNF hypotheses
in much simpler forms than MB-DNF(B, O). Actually, each monomial in 7 output
by PI-DNF(B, O) is subsumption-minimal, so we have a compact representation
of the DNF hypotheses. The difference of average sizes of hypotheses between
these two procedures becomes much larger as the number of variables increases.

Ezample 3.3. The following theory in [3] is originally by Wray Buntine (1988):
B = (cat — pet) N (small A fluffy A pet — cuddly_pet),
O = (fluffy A cat — cuddly_pet).
Then =B V O is the DNF formula:
(cat A\ —pet) V (small A cat A —cuddly_pet) V (=fluffy V —cat V cuddly_pet).
Each of the following prime implicants is not an implicant of = B:
PI(-BV O) = {—fluffy, —~cat, ~pet, cuddly_pet, small}. (3)

Taking the disjunction of any non-empty subset of (3) provides a hypothesis,
and hence 2° — 1 = 31 hypotheses are obtainable. The average number of literals



in each hypothesis is approximately 2.5. For example, if all monomials are taken
into account, we have a weakest hypothesis that is equivalent to B — O:

H = (fluffy A cat A pet — cuddly_pet V small).

On the other hand, if MB-DNF(B, O) is used, the number of models in M =
M (=B V 0) is 2> — 1 = 31 and the number of models in D = M(B A O) is
25— (23+21422) = 18, then the number of possible combinations of a non-empty
subset of D and a subset of M \ D becomes (218 — 1) x (231718) ~ 2.147 x 10,
and the average size of each hypothesis before simplification is 15.5 x 5 = 77.5.

4 Abduction and Signature Restriction

In the previous section, we do not assume any restriction on hypotheses. Here we
consider a bias I" given as a set of literals allowed to appear in hypotheses. In the
case of abduction, each literal in I" is called an abducible. We now characterize
abductive hypotheses in terms of prime implicants. Let A be a set of literals.
An implicant C of a formula ¢ is signature-restricted with respect to A (or an
A-restricted implicant of ¢) if all literals in C' belongs to .A. Then, the set
of signature-restricted implicants is closed under subsumption: If C' is an A-
restricted implicant of ¢ and C’ subsumes C, then C’ is also an A-restricted
implicant. The set of all A-restricted prime implicants of ¢ is denoted as PI4(y).

Proposition 4.1. Let (B, 0, I) be an abductive problem. The set of subsumption-
minimal abductive hypotheses for (B,0,TI") is exactly PIr(~BV O)\ PI(—B).

Proposition 4.1 is contrasted with formalizations of abductive hypotheses |8,
5,2], which are based on prime implicates instead of prime implicants. In fact,
there is a duality between these formalizations, and hence procedures to compute
A-restricted prime implicates [2] can be utilized for our purpose. Moreover, when
B is a set of propositional Horn clauses, there are some efficient procedures
to enumerate abductive hypotheses [1]. The procedure PI-DNF(B,O) can then
be adapted to compute abductive hypotheses by computing I'-restricted prime
implicants and selecting those elements in N = PIp(=BV O) \ PI(=B) at
Step 2. Similarly, inductive hypotheses with a bias I' can also be devised by
changing Step 2(c) to select S C PIr(—B V O) such that S NN # 0.

5 Extension to the First-order Case

We here transfer the concept of characteristic clauses [2] to its dual concept in
first-order logic. A monomial C; subsumes a monomial C5 if there is a substitu-
tion 6 such that C10 C C5. Given a first-order open formula ¢ whose variables
are assumed to be existentially quantified at the front, a monomial C is called a
generalization of ¢ if 3C |= Jp, where Jyp is the existential closure of ¢, and is
further said A-restricted if all literals in C' belongs to A. The set of A-restricted



generalizations of ¢ is denoted as Gen 4(p). Then the characteristic monomials
of ¢ with respect to A is defined as CM (¢, A) = 1 Gen (), where pS denotes
the set of monomials in S that are minimal with respect to subsumption.

We can now define the dual concept of CF-induction [3], called GF-induction
(generalization-finding induction), by lifting the procedure PI-DNF(B, O) to the
first-order case, in which the prime implicants PI are simply replaced with the
characteristic monomials C'M . Computing characteristic monomials can be done
in the dual form using the first-order consequence-finding procedure SOLAR [7].
For a formula «, the dual of o, denoted as a?, is the formula obtained from
a by swapping A and V (and V and 3). For a CNF formula ¥, Carc(X, A) is
the characteristic clauses of X with respect to A, which is the dual concept of
characteristic monomials, and Skolem(X) is a Skolemization of Y. Then, the
resulting procedure of GF-induction, GF-ind(B, O, A), is defined as follows:

1. Let F be the CNF formula (—B)? A Skolem(O%), and P = Carc(F, A);
2. Select a non-empty subset S of P as follows:
(a) Identify N'= P\ Carc((—B)4, A);
(b) If N =0, then output “No solution”;
(c) Else, select any set S C P such that S NN # 0;
3. Let S? be the DNF formula \/ . s(Ascp 1);
4. Generalize S¢ to a hypothesis H such that B A H is consistent.

In GF-ind(B, 0, A), Steps 1, 2 and 4 are similar to the corresponding steps in
CF-induction [3], but Step 3 converts the dual of a hypothesis to the original
form and distribution (from CNF to DNF) is not necessary unlike CF-induction.

As in the case of CF-induction, GF-induction can be proved to be sound and
complete in the class of induction problems with first-order full clausal theories.
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