
Relational Networks of Conditional Preferences

Frédéric Koriche

LIRMM, Université Montpellier II, France
frederic.koriche@lirmm.fr

Abstract. Much like relational probabilistic models, the need for rela-
tional preference models naturally arises in real-world applications involv-
ing multiple, heterogeneous, and richly interconnected objects. On the one
hand, relational preference models should be expressive enough to represent
preferences in a compact and transparent form. On the other hand, these
models should include nontrivial subclasses which are tractable for rea-
soning and learning purposes. In this paper, we introduce the framework of
conditional preference relational networks (CPR-nets), which maintains the
spirit of CP-nets by expressing relational preferences in a natural way using
the ceteris paribus semantics. We show that the class of acyclic CPR-nets
supports tractable inference for outcome optimization and ranking tasks.
In addition, we show that the subclass of tree-structured CPR-nets is effi-
ciently online learnable from both optimization tasks and ranking tasks.

1 Introduction

A recurrent issue in AI is the development of intelligent agents capable of tailor-
ing their actions and recommendations to the preferences of human users. The
spectrum of applications that resort on this ability is extremely wide, ranging
from adaptive interfaces and configuration softwares, to recommender systems and
group decision-making. In essence, the crucial ingredients for addressing this issue
are representation, inference and learning. In complex domains, we need a repre-
sentation that offers a compact encoding of preference relations defined over large
outcome spaces. We also need to be able to use this representation effectively in
order to answer a broad range of queries. And, since the performance of decision
makers is dependent on their aptitude to reflect users’ preferences, we need to be
able to predict and extract such preferences in an automatic way.

Among the different preference models that have been devised in the literature,
conditional preference networks (CP-nets) have attracted a lot of attention by
providing a natural representation of qualitative preferences [1,2,5]. By analogy
with Bayes nets, CP-nets are graphical structures in which nodes describe variables
of interest and edges capture preferential dependencies between variables. Each
node is labeled with a table expressing the preference over alternative values of the
node given different values of the parent nodes under a ceteris paribus assumption.
For example, the entry shirt : red � black | jacket = black, pants = black

might state that, all other things equal, I prefer a red shirt to a black one if the
color for both the jacket and the pants is black.

Despite their popularity, CP-nets are intrinsically limited to “attribute-value”
domains. Many applications, however, are richly structured, involving objects of
multiple types that are related to each other through a network of different types of
relations. For example, flight recommender systems are usually defined over large
databases involving various entities, such as passengers, itineraries, flights, airways

and aircrafts, each entity being specified with its own attributes, and related to
others using appropriate types of references. Such applications pose new challenges
for devising relational preference models endowed with expressive representations,
efficient inference engines, and fast learning algorithms.

In this paper, we introduce the framework of conditional preference relational
networks (CPR-nets) that enhances the expressive power of CP-nets to relational
domains. Briefly, a CPR-net is a template over a relational schema which specifies
a ground CP-net for each particular database of objets. The template allows us
to use information about a group of objects in order to derive preferences about
other, related objects. Based on the ceteris paribus semantics, the representations
provided by CPR-nets are transparent, in that a human expert can easily evaluate
their meaning. For instance, in a CPR-net for flight recommendation, the entry:

fromAirport(z) :LHR�LGW�STN�LTN | next(x, y, z), toAirport(y)=LHR

might state that, all other things being equal, if London Heathrow is the destination
airport of the flight y in my itinerary x then, concerning the departure airport for
the next flight z in the itinerary x, my preferences in decreasing order of priority
are Heathrow, Gatwick, Stansted, and Luton.

A key property of our framework is that the class of acyclic CPR-nets (with
constant in-degree) supports efficient inference for two sorts of reasoning tasks of
practical interest. Namely, in an outcome optimization task, the decision maker is
given a relational outcome in which several attributes are left unspecified; the goal
is to find a maximally preferred extension of this partial outcome. If the CPR-net
is acyclic, such an extension is unique and can be found in polynomial time. In an
outcome ranking task, the decision maker is given a set of relational outcomes, and
the goal is to rank them in some non-decreasing order of user preference. Again,
such an ordering can be found in polynomial time using an acyclic CPR-net.

The learnability of CPR-nets is analyzed within the online learning model [3]
which has become the mainstream setting for structured prediction. In this model,
the decision maker observes instances of a reasoning task in a sequential manner.
At trial t, the algorithm attempts to predict the solution associated with the tth
instance using its current CPR-net. Once the algorithm has predicted, it receives
the correct solution and incurs a loss measuring the discrepancy between its pre-
diction and the response. The goal is to achieve a vanishing per-round regret with
respect to the best CPR-net in the hypothesis class. Based on this model, we show
that the class of tree-structured CPR-nets (with constant clause and domain size)
is efficiently learnable from both optimization tasks and ranking tasks.

2 Language and Semantics

The reasoning problems under consideration in this study assume a prefixed and
known relational schema which consists in a set of object types, a set of value types,
a set of attributes, and a set of references. Each reference r is associated with a tuple
of object types dom(r) specifying its domain. Each attribute a is associated with
a tuple of object types dom(a) and a value type ran(a) specifying its domain and
range, respectively. Finally, each value type t is associated with a set of values Vt
and an aggregator γt : ℘(Vt) → Vt that maps any subset of Vt into an element of
Vt. In what follows, Vran(a) and γran(a) are abbreviated as Va and γa. Similarly, for
a set par(a) = {a1, · · · , ap}, we write Vpar(a) as an abbreviation of Va1 × · · · × Vap ,
and γpar(a) as an abbreviation of the componentwise function 〈γa1 , · · · , γap〉.

We assume that the arities of attributes and references are bounded by a con-
stant k. The input dimension of the schema is thus specified by the number a of
attributes, the number r of references, and the largest size d of the sets of values.

Language. Given a countable set of variables, each associated with an object type
or a label type, the notions of attribute atoms and reference atoms are defined in
the obvious way. A conditional preference clause for an attribute a with respect to
a set of attributes par(a) = {a1, · · · , ap} is an expression Ca of the form

a(x) : y1�· · · �yda | r1(x1), · · · , rq(xq), a1(x′1)=y′1, · · · , ap(x′p)=y′p

where the head is formed by a preference atom involving the attribute a, a tuple of
variables x of type dom(a), and a set of da = |Va| variables yi of type ran(a); the
body is formed by attribute atoms over par(a) and reference atoms. We assume
that any object variable occurring in the head of the clause must also occur in its
body. The size of Ca is the number p+ q of atoms in its body. A preference clause
is acyclic if its body is representable by a join tree.

A conditional preference table for Ca is a map cpt(a) that assigns to each tuple
in Vpar(a) a total ordering of values in Va. Any entry of cpt(a) can be viewed as an
instance of Ca obtained by replacing each variable y′i in the body of Ca with a value
v′i in Vai and each variable yi in the head of Ca with a distinct value vi in Va.

Finally, a conditional preference relational network (CPR-net) is a map N that
associates to each attribute a in the relational schema a preference clause Ca and a
preference table cpt(a) for Ca. The dependency graph of N is the digraph obtained
by associating an edge to each pair (a, ai) of attributes such that ai occurs in the
body of Ca. The in-degree of N is the maximum of the in-degrees of its dependency
graph and the clause size of N is the maximum of the sizes of its preference clauses.
N is acyclic if its dependency graph is acyclic and its preference clauses are all
acyclic; N is tree-structured if it is acyclic and of in-degree 1.

Semantics. A skeleton for is a map K that assigns to each object type t in the
relational schema a finite set Ot of objects, and to each reference r with domain
t = (t1, · · · , tk) in the schema a subset of Ot = Ot1 × · · · × Otk .

An outcome or interpretation for a skeleton K is a map I that extends K by
assigning to each attribute a with domain t in the schema a function aI from Ot
into Va. If Ca is a preference clause for the attribute a with respect to the parents
par(a) = {a1, · · · , ap}, and o is a tuple of objects of type dom(a), we denote by
[Ca(o)]I the set of all tuples v in Vpar(a) for which the existential closure of the
body of Ca grounded onto o and v is true in I.

Based on these notions, the ceteris paribus preference semantics for relational
networks is defined as follows. Consider a CPR-net N and a skeleton K. Given an
attribute a and a tuple of objects o iof type dom(a), a pair (I, I ′) of interpretations
for K is called a flip on a(o) if I and I ′ are everywhere identical excepted for the
values aI(o) and aI′(o). A flip (I, I ′) on a(o) is a model of N if aI(o) is preferred to
aI′(o) in the ordering specified by cpt(a) for the aggregated tuple γpar(a)[Ca(o)]I .

By extension, any pair (I, I ′) of interpretations for K is a model of N if there is
a sequence (I1, · · · , In) of flips such that I1 = I, In = I ′, and (Ii, Ii+1) is a model
of N for for 1 ≤ i < n. In this case, we say that I dominates I ′ in N , and write
I �N I ′. A CPR-net N is coherent if for any skeleton K the relation �N is a strict
partial order over the space of interpretations extending K.

Theorem 1. Any acyclic CPR-net is coherent.

3 Preference Reasoning

In the setting suggested by our framework, a preference reasoning problem consists
in a class N of CPR-nets, a set X of instances, and a set Y of solutions. For a
representation class N , we denote by N [p] the parameterized subclass of N where
p is a tuple of parameters, referring to the language or the structure, and taken
as constants. Notably, we shall concentrate here on the class Nacy[p] of acyclic
CPR-nets with constant in-degree p.

Lemma 1. Let N ∈ Nacy[p] be an acyclic CPR-net of clause size c, and K be a
skeleton associating at most n objects per (object) type. Then, for any interpretation
I extending K and any ground attribute a(o), the aggregated tuple γa[Ra(o)]I can
be computed in O(q) time, where q = cdpnk log2(n

k).

A partial interpretation is a map that extends a skeleton by associating to each
attribute a of domain t a function aI from Ot into Va ∪ {∗}. The symbol ∗ refers
to the unknown value and captures the fact that some ground attributes may not
be observed. The spaces of partial interpretations and total interpretations defined
over any skeleton are denoted I∗ and I, respectively. For a partial interpretation
I ∈ I∗, a completion of I is a total interpretation J ∈ I that replaces each unknown
value in I with a value of appropriate type. An outcome optimization problem is a
tuple (N , I∗, I). Given a CPR-net N and a partial interpretation I, the task is to
find a completion J of I which is maximally preferred with respect to �N .

For acyclic networks, the optimal extension of any partial outcome I is unique
and can be found using the following greedy algorithm: we first construct a topo-
logical ordering of the a attributes in the dependency graph of N ; then, starting
from J = I, we instantiate each ground attribute a(o) in turn to its maximal value
in cpt(a) given the known parent assignment γpar(a)[Ca(o)]J .

Theorem 2. Let N ∈ Nacy[p] be an acyclic CPR-net of clause size c and I ∈ I∗
a partial outcome with at most n objects per type. Then, the optimal completion of
I with respect to N can be inferred in O(ankq) time.

An outcome set is a collection of interpretations extending the same skeleton
K. Let Im be the space of all outcome sets of size m, and Sm denote the symmetric
group of all permutations over m elements. Then, an outcome ranking problem is
a tuple (N , Im,Sm). Given a CPR-net N and an outcome set S, the task is to find
a permutation π(S) which is consistent with N . Namely, π(S) is consistent with
N if, for any pair {I, J} in S, I occurs before J in π(S) whenever I �N J .

For acyclic networks, such a permutation can be found in polynomial time using
the following algorithm: we construct a digraph G over S for which the edge set
is initialized to the empty set. For each pair {I, J} of outcomes in S, we identify
the set A of ground atoms a(o) such that γpar(a)[Ca(o)]I = γpar(a)[Ca(o)]J . If for
all a(o) ∈ A, aI(o) is preferred to aJ(o) in the table cpt(a), then we expand G
with (I, J). Dually, if for all a(o) ∈ A, aJ(o) is preferred to aI(o), then we expand
G with (J, I). Because N is acyclic, G is guaranteed to be acyclic. This, together
with the fact that the projection of �N onto S is a subset of G, implies that any
linear extension of G is consistent with �N .

Theorem 3. Let N ∈ Nacy[p] be an acyclic CPR-net of clause size c and S ∈ Im
be an outcome set defined over a skeleton with at most n objects per type. Then,
finding a permutation of S consistent with N can be done in O(am2nkq) time.

4 Preference Learning

By extending our previous considerations, a preference learning problem consists
in a class N of CPR-nets, a space X of instances, a space Y of solutions, and
a nonnegative and bounded loss function ` : N × X × Y → [0, λ]. In the online
learning model, the decision maker is a learning algorithm that observes instances
in a sequence of trials. At trial t, the algorithm first receives an instance xt ∈ X
and is then required to predict a solution ŷt ∈ Y associated to this instance using
its current hypothesis Nt ∈ N . Once the algorithm has predicted, it receives the
correct solution yt ∈ Y and incurs a loss `(Nt;xt, yt) which assesses the quality of
the hypothesis Nt on the example (xt, yt). In light of this information, the decision
maker is allowed to choose a new hypothesis, possibly using a randomized strategy.

As a common thread in the analysis of online algorithms, we make no assump-
tions regarding the sequence of examples. In this general setting, the performance
of the algorithm is measured relatively to the performance of the best hypothesis in
N . Namely, the regret of an online algorithm with respect to a sequence {(xt, yt)}
of examples is given by the difference between the expected cumulative loss of
the algorithm E[

∑
t `(Nt;xt, yt)] and the cumulative loss of the best hypothesis

infN∈N
∑
t `(N ;xt, yt) chosen with the benefit of hindsight.

A class of hypotheses N is online learnable with respect to a class of reasoning
tasks (X ,Y, `) if there exists an algorithm A such that, for any sequence of T
examples, the regret of A is sublinear as a function of T . This condition implies
that “on the average” the algorithm performs as good as the best fixed hypothesis
in hindsight. If, in addition, the computational complexity of A is polynomial in
the parameters associated to N , X , Y and `, then N is efficiently learnable.

The rest of this section is devoted to the class Ntree[c, d] of tree-structured
CPR-nets of constant clause size c defined over a relational schema for which
the number of values per domain is bounded by the constant d. For this class,
the dependency graph of any network is a directed forest over a attributes or,
equivalently, a directed tree with fixed root over a + 1 attributes obtained by
adjoining a new attribute > (with domain V> = {1}) as the fixed root. Any network
N in Ntree is encoded as a set of entries of the form 〈Ca, v′, π(Va)〉, where Ca is a
preference clause for some attribute a and π(Va) is a permutation of the values in
Va. If Ca includes a parent a′ of a then v′ is a value in Va′ ; otherwise v′ = 1. Let Etree
denote the set of all distinct entries which may occur in any network of Ntree. We
say that a loss function ` is linear for Ntree if `(N ;x, y) =

∑
e∈N `(e;x, y) where

`(e;x, y) is the loss incurred by the entry e on the example (x, y).
Our online learning algorithm is based on a variant the Hedge algorithm [4]

which is adapted to structured concepts with linear loss functions. This variant
is often referred as to the Expanded Hedge algorithm [6]. The overall idea is to
maintain a loss vector Lt over Etree which is initially set to L1(e) = 0. At trial
t, the algorithm predicts with a network Nt chosen at random according to the
probability distribution Pt(N) ∼ exp[−

∑
e∈N Lt(e)]. At the end of the trial, the

loss vector Lt is updated using the rule Lt+1(e)=Lt(e) + ηt`(e;xt, yt), where ηt is
an adaptive learning rate.

Lemma 2. The regret of the Expanded Hedge algorithm for the class Ntree[c, d]
with respect to any loss function that is linear for Ntree is bounded by

λ

√
ln |Ntree|

T
where |Ntree| ≤ (a+ 1)a−1aa

2rc(d!)d

Because Ntree[c, d] grows exponentially with the number of attributes and the
number of references, the key computational difficulty is to generate hypotheses at
random according to the distribution specified by the Expanded Hedge algorithm.

This difficulty can be circumvented using the following strategy. Let G be a
(multi-)digraph for which the nodes include > and the attributes in the schema.
For each clause Ca occurring in any entry of Etree, the graph G includes a directed
edge labeled by Ca. Namely, if a has a parent a′ in Ca then the edge of Ca is (a, a′);
otherwise, the edge is (a,>). Now, suppose that we wish to generate a hypothesis
Nt according to P(Nt) ∼ exp[−

∑
e∈Nt

Lt(e)]. Let wt be the weight vector over
Etree defined by wt(e) = exp(−Lt(e)). The weight of each edge labeled by Ca in the
graph G is given by wt(Ca) =

∑
v′
∏
π(Va)

wt〈Ca, v′, π(Va)〉. Importantly, wt(Ca) is
equal to the sum of weights of all preference tables for Ca. Based on the Matrix-Tree
Theorem [8], a random spanning tree of G can be generated in time polynomial
in the size of G [7]. If Ca is a clause selected by the tree, then the corresponding
table cpt(a) in N is filled by picking, for each value v′ ∈ Va′ , a permutation π(Va)
at random according to the projection of wt onto the entries containing Ca and v′.

Lemma 3. During each trial t of the Expanded Hedge algorithm, any hypothesis
Nt ∈ Ntree[c, d] can be generated at random in O(a5rc) time.

We now have all ingredients in hand to derive the main learnability results. Let
(I∗, I, `opt) be the class of optimization tasks where `opt is decomposed as follows:
if e = 〈Ca, v′, π(Va)〉, then `opt(e; I, J) = 1 if there is a tuple of objects o such
that γpar(a)[Ca(o)]J = v′, aI(o) = ∗ and aJ(o) is suboptimal with respect to π(Va).
Otherwise `opt(e; I, J) = 0. Note that `opt is bounded by λ = a.

Theorem 4. Ntree[c, d] is efficiently learnable with respect to (I∗, I, `opt).

Let (Im,Sm, `rank) be the class of ranking tasks for which `rank is decomposed
as follows: if S = {I, J} and π(S) = (J, I), then `rank(e;S, π(S)) = 1 if there
is a tuple o such that γpar(a)[Ca(o)]I = γpar(a)[Ca(o)]J and aI(o) is preferred to
aJ(o) in π(Va). Otherwise, `rank(e;S, π(S)) = 0. The case π(S) = (I, J) is handled
symmetrically. By extending {I, J} to an outcome set S of size m and applying
the same policy to each pair in S, the loss `rank is bounded by λ = am2.

Theorem 5. Ntree[c, d] is efficiently learnable with respect to (Im,Sm, `rank).

References

1. Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D.: CP-nets: A tool for
representing and reasoning with conditional Ceteris Paribus preference statements. J.
Artif. Intell. Res. 21, 135–191 (2004)

2. Brafman, R.I., Domshlak, C., Shimony, S.E.: On graphical modeling of preference and
importance. J. Artif. Intell. Res. 25, 389–424 (2006)

3. Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning, and Games. Cambridge (2006)
4. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and

an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)
5. Goldsmith, J., Lang, J., Truszczynski, M., Wilson, N.: The computational complexity

of dominance and consistency in CP-nets. J. Artif. Intell. Res. 33, 403–432 (2008)
6. Koolen, W.M., Warmuth, M.K., Kivinen, J.: Hedging structured concepts. In: Pro-

ceedings of the 23th Conference on Learning Theory (COLT’10). pp. 93–105 (2010)
7. Kulkarni, V.G.: Generating random combinatorial objects. J. Algorithms 11(2), 185–

207 (1990)
8. Tutte, W.T.: Graph Theory. Cambridge (1984)

	-5ptRelational Networks of Conditional Preferences

