
Multivalue Learning in ILP

Orlando Muñoz Texzocotetla and René Mac Kinney Romero

Departamento de Ingenieŕıa Eléctrica
Universidad Autónoma Metropolitana - Iztapalapa, P.O. Box 55-534 México D.F.,

México

Abstract. In this paper we present a method to make more expressive
the hypotheses searched by ILP algorithms. This method allows to use
more than one value in literals. The method we propose constructs new
clauses using information obtained analyzing values in literals with mul-
tivalue learning. In order to discover such information, we draw from
techniques used in inducing trees algorithms.

Keywords: Artificial Intelligence, Machine Learning, Unbiased Learn-
ing, ILP

1 Introduction

Learning can be viewed as a search for an hypothesis H which satisfies some
quality criteria [6]. This search is carried out by a learner, which “can be des-
cribed in terms of the structure of its search space, its search strategy and search
heuristics” [4]. In Inductive Logic Programming (ILP), the search task can be
described as follow: given sets of positive and negative examples (E+ and E−),
and a background knowledge B, an ILP learner searches for an hypothesis H
such that B ∧H |= E+.

Regarding the search space, in ILP is determined by the language of logic
programs, which are formed with program clauses of the form T ← Q, where T
is an atom p (X1, . . . , Xn) and Q is a conjunction of literals L1, . . . , Lm. Also the
search space’s clauses form, is syntactically restricted by a bias language. This
bias determines which clauses are searched from the vocabulary of predicates,
function symbols and constants that are in the background knowledge [4].

When bias language is stronger (lack of expressiveness), the search space
becomes smaller and more efficient, but it is likely that the final hypothesis can
not represent an appropriate solution for the target problem. For instance, if
the language restricts the use of the target atom into the clause’s body then no
hypothesis will represent an appropiate solution to any recursive problem.

Each ILP algorithm defines a language in order to construct theories with
the highest expressiveness degree. However, current algorithms test only a single
value in constructing literals, thus making the hypothesis search space to be
constructed with lots of rules. If the background knowledge is large then it is
more likely that the final theory contains many rules, hence making it more
difficult to interpret.



2

In this paper we present a method to make more expressive the hypotheses
constructed by ILP algorithms. This method allows to build literals that use more
than one value. It constructs new clauses using information obtained analyzing
values present in literals (values that are selected by the user) with multivalue
learning.

To discover and extract that information, we implemented and adapted the
algorithm of selection of split point used by two decision tree inducers: QUEST
(Quick Unbiased Efficient Statistical Tree) [5] and CRUISE (Classification Rule
with Unbiased Interaction Selection and Estimation) [3]. To choose the best
attribute those algorithms use analysis of variance (ANOVA) or Levene’s test
for numeric attributes and Pearson chi-square test for categorical attributes1.
In the case of CRUISE, this algorithm performs a BOX-COX transformation
before QDA. To find the split point, we use Quadratic Discriminant Analysis
(QDA).

These new clauses (we call them multivalue clauses) are added to the back-
ground knowledge, thus allowing new literals to be used by the ILP algorithm
search. This, we believe, allows ILP algorithms to construct hypotheses with
fewer rules.

This article is organized as follows: in section 2 we describe, with an example,
the problematic that we want to address; in section 3, we present the method
to create new multivalue clauses and to make more literals available; in section
4 we show the experiments performed and the results obtained. Finally our
conclusions and the future work are presented in section 5.

2 Univalue clauses

To describe our main goal, we present a pattern recognition problem (Bon-
gard)[1]. This problem consists of finding a theory which describes the patterns
related to the positive examples, these contains at least a triangle which points
to some of the following directions: west (w), northwest (nw) and north (n). The
target literal is: bongard (Example)←. Hypotheses will be created from each
value of following literals contained in the background knowledge:

– triangle (Example,NumT ). circle (Example,NumC). square (Example,NumS)

– direction (NumT,Direction) where Direction ∈ {w, nw, n, ne, e, sw, s, se}

In this case Aleph [11] (program that implements Stephen Muggleton’s algo-
rithm Progol [8]) returns the following theory, with three rules:

1. bongard (A) : −triangle(A,B), direction(B,w).

2. bongard (A) : −triangle(A,B), direction(B,nw).

3. bongard (A) : −triangle(A,B), direction(B,n).

1 A categorical attribute takes values unordered, and a numerical attribute takes values
on the real line.



3

To create this theory, ILP algorithms use clauses whose literals declare a
single value to each literal. For instance, the second argument of the literal
direction, Direction, is a categoric attribute with eight possible values. Each
time that direction appears in some of the clauses which are contained in the
search space, Direction presents only one of its values. This type of clauses,
we’ll call them univalue. Namely, if all the arguments of each literal within a
clause’s body declare only one value, then this is a univalue clause. If at least
one argument presents more than one value, then we will call them multivalue
clauses.

Thus if the number of values for attributes (categoric and/or numeric) in-
creases significantly, then hypotheses may have lots of rules, therefore making
these hypotheses more dificult to interpret. We can see that it would be very
helpful to create multivalue clauses which would allow ILP algorithms to cre-
ate smaller hypotheses. Therefore we can ask: is it possible that ILP algorithms
can test more than one value (a set of values) at one time? How to create each
set of values? and, Will multivalue clauses help to create hypotheses with fewer
rules? The method we propose we believe answers the previous questions and it
is detailed in the following section.

3 Multivalue clauses

The proposed method discovers information at the examples. This information
is used to create new clauses. These clauses will be added to the background
knowledge to allow the ILP algorithms to use them adding the necessary literals
to the search space. We will use the most popular ILP algorithms FOIL [9] and
[8] Progol. This method has the following steps:

1. Creation of subsets of values. In this step we make a binary split on
the set of all values. For this we implemented the algorithm we presented
in section 1 of selection of split point. Thus for each categoric value with a
set C = {v1, . . . , vm}, we will obtain two disjoint subsets C1 y C2 such that
C1 ∩ C2 = φ. We also use this when we have a small number of discrete
numeric values. For each numeric value we will obtain a split point d, which
will divide the full set of values in two subsets. The first one will contain
values less or equal than d (C1 = {x • x ≤ d}), and the second one will
contain values greater than d (C1 = {x • x > d}). C1 ∩ C2 = φ.

2. Creation of multivalues clauses. The subsets of values will be used to
create multivalue clauses. Categoric attributes: each subset of values will
be declared in the appropiate literal rather than a single value. Thus we
will create two multivalue clauses. Numeric attributes: for these type of at-
tributes we will create two clauses too. In the first one the split point will
determine the values less or equal than d. In the second one the split point
will determine the values greater than d.

3. Modification of background knowledge. In this step we add the multi-
value clauses to the background knowledge.



4

4. Usage. The new information is used by the ILP algorithm. Making literals
for the new clauses available to the ILP search.

3.1 Example

In order to explain the method proposed, we present a simple ILP example. We
must find a theory on the number of sides that must have a figure that belongs
to one of the following classes: quadrilateral or non quadrilateral. The target
literal is class (Fig,Class)←. The background knowledge declares the relation
side (F,S), which indicates the number of sides S of the figure F .

Aleph returns the following theory:

– class (A, quadrilateral)← sides (A, 4)
– class (A,non quadrilateral)← sides (A, 3)
– class (pentagon, non quadrilateral)← sides (A, 5)
– class (hexagon, non quadrilateral)← sides (A, 6)

Now let’s compare the above theory to our method. In the next steps we
show how the method proposed works for this problem.

1. Creation of subsets of values. This problem has a small number of dis-
crete numeric values so we work on it as a categoric value which indicates the
number of sides of each figure. We obtain two subsets of categories: A = {4}
and B = {3, 5, 6}.

2. Creation of multivalues clauses. For each subset of categoric values our
method creates multivalue clauses, the corresponding pair is:
sidesA (F )← sides (F,L) ,member (L, [4])

sidesB (F )← sides (F,L) ,member (L, [3, 5, 6])

3. Modification of the background knowledge. In this step the new clauses
are added to the background knowledge.

4. Usage. Finally this new background knowledge is used by adding literals
sidesA and sidesB to the possibilities of constructing hypotheses by the ILP
algorithms, in this example the final theory (with Aleph) is:
class (A, quadrilateral)←sides (A,L) ,member (A, [4]) .

class (A,no quadrilateral)← sides (A,L) ,member (A, [3, 5, 6]) .

4 Experiments

The databases analyzed were obtained from the UCI Repository [2], and each
one was divided in ten folds to perform a cross validation analysis. In order to
compare our method with univalue learning, we analyzed each problem with the
following ILP systems:

– Aleph. This is a ILP system created by Ashwin Srinivasan [11], this system
implements the Progol algorithm ([7]).

– multivalues FOIL. Adapted FOIL [9] with our method.



5

– multivalues Aleph. Adapted Aleph with our method.

For each problem, we analyzed: the number of rules for each theory, percen-
tage of the covered examples, and the time of execution. In the last analysis we
compare the results with Aleph and multivalue Aleph. All examples were per-
formed on a modern multicore PC machine. In the next subsections we present
the experiments that we performed.

4.1 Student Loan and Japanese Credit

For the Student Loan Problem the goal is to create a logic program which indi-
cates if a student must pay a loan. The goal predicate is no payment due (Student)←.
The declared predicates in the background knowledge provide information about:
gender, longest absense from school, school, employment, etc. This problem has
two numeric attributes and two categoric attributes.

The second database is Japanese Credit Screening Data Set and contains
information about people who were granted a bank credit. This database was
generated from japanese enterprises which granted bank credits. The goal rela-
tion is creditscreen (Person)←. In order to grant a credit is taken into account
the following information: employment, type of good purchased for credit, gen-
der, marital status, age, problematic region, etc. This database has five numeric
attributes and one categoric attribute.

Results. The table 1 shows the results for these database, and we can see
that the number of rules is decreased with our method. Regarding the accuracy,
we can note that with the multivalues clauses the percentage of covered examples
increases, hence it’s neccesary to perform an study in order to can affirm that
with our method the accuracy is improved.

Table 1. Student loan and Japanese credit results.

Student Loan Avg Student Loan Avg
Number of rules === Percentage of covered examples ===

Aleph without multivalue clauses 9 rules Aleph without multivalue clauses 71%
Aleph with multivalue clauses 6.2 rules Aleph with multivalue clauses 89%
FOIL with multivalue clauses 5 rules FOIL with multivalue clauses 87%

Time of performance ===
Aleph without multivalue clauses 1.658 sec.
Aleph with multivalue clauses 2.8868 sec.

Japanese Credit Avg Japanese Credit Avg
Number of rules === Percentage of covered examples ===

Aleph without multivalue clauses 17.8 rules Aleph without multivalue clauses 79.87%
Aleph with multivalue clauses 14.7 rules Aleph with multivalue clauses 82.23%
FOIL with multivalue clauses 10.1 rules FOIL with multivalue clauses 96.66%

Time of performance ===
Aleph without multivalue clauses 1.39 sec.
Aleph with multivalue clauses 1.97 sec.



6

5 Conclusions and future work

With the creation of the subsets of values (categoric or numeric) the ILP algo-
rithms identify significant information which is contained in the examples and
background knowledge. This information is the split point d, which, as seen from
the results, we can use to reduce the number of rules for the theories induced.
In order to affirm that the accuracy is improved with our method, we need to
analyze more ILP databases with multivalue clauses.

Furthermore, not all values can be processed with our method. Only those
attributes on literals whose values are applicable for all objects. For instance,
an attribute like the name or surname is not applicable for all persons, hence it
can not be used by our method. Instead a value like the age is applicable for all
persons, therefore we can use it with our method. But this analisys is left to the
user who selects which values are selected.

Regarding future work, there are many avenues to explore. We can perform
some improvements in the implemented algorithm in order to improve the results
obtained to create new clauses. We can go further by, on one hand, obtaining
more than one split point thus dividing in more than two subsets the values.
On the other hand, in addition to the multivalue clauses, we could also design a
method which creates multivariate clauses. It might be productive to look into
other decision tree inducers techniques to extract significative information.

Finally it would be interesting to implement all ILP algorithms in one system
like weka [10] to allow the comparision on them to be more simple.

References

1. M. M. Bongard, Pattern Recognition, Hayden Book Co., Spartan Books.,
Rochelle Park, N.J., 1970.

2. A. Frank and A. Asuncion, UCI machine learning repository, 2010.
http://archive.ics.uci.edu/ml.

3. H. Kim and W.-Y. Loh, Classification trees with unbiased multiway splits, Journal
of the American Statistical Association, (2001), pp. 589–604.

4. N. Lavrac and S. Dzeroski, Inductive Logic Programming: Techniques and Ap-
plications, Ellis Horwood, New York, 1994.

5. W.-Y. Loh and Y.-S. Shih, Split selection methods for classification trees, Sta-
tistica Sinica, (1997), pp. 815–840.

6. T. M. Mitchell, Machine Learning, McGraw-Hill, 1997.
7. S. Muggleton, Inverse entailment and progol, New Generation Comput., (1995),

pp. 245–286.
8. S. Muggleton and L. D. Raedt, Inductive logic programming: Theory and meth-

ods, Journal of Logic Programming, (1994), pp. 629–684.
9. R. Quinlan, Learning logical definitions from relations, Machine Learning, (1990),

pp. 239–266.
10. E. F. Remco R. Bouckaert, WEKA Manual for Version 3-6-0, University of

Waikato, Hamilton, New Zealand, 2008.
11. A. Srinivasan, The Aleph Manual, 2004. http://www.comlab.ox.ac.uk/activities/machinelearning/Aleph/.


