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Abstract. In this work we present an optimized version of XMuSer, an
ILP based framework suitable to explore temporal patterns available
in multi-relational databases. The main idea behind XMuSer consists of
exploiting frequent sequence mining, an efficient and direct method to
learn temporal patterns in the form of sequences. The efficiency of XMuSer
comes from a new coding methodology and on the use of a predictive
sequential miner, which finds discriminative frequent patterns. After find-
ing the discriminative sequences, we map the most interesting ones into
a new table that encodes the multi-relational temporal information. The
original database is enlarged with a new table that encodes the temporal
information in the form of sequences. The last step of our framework
consists of applying an ILP algorithm to learn a theory on the enlarged
relational database. We evaluate our framework by addressing three clas-
sification multi-relational problems. Overall, we observe clear advantages
when exploiting temporal information.

1 Introduction

Multi-relational databases are widely used to represent and store data. A multi-
relational database is often composed by a target table and by a number of
fact tables. The target table will represent the main objects of interest (say,
patients in a medical domain); fact tables will represent the information being
accumulated about the entities in the target table (say, medical visits or drug
usage in the medical domain). We expect target tables to be relatively stable or
to grow slowly over time; in contrast, fact tables may grow quickly. Moreover,
quite often the information stored in fact tables is time-based and consists of
sequences that reflect the evolution of a phenomenon of interest.

The main goal of this work is to exploit heterogeneous temporal information
stored in the multi-relational sequences of events. To do so, we propose an op-
timized version of the XMuSer (eXtended MUlti-relational SEquential patteRn
knowledge learning) framework [3] that encodes timed data, stored in one or
several fact tables, into a separate sequence relation, uses a predictive sequence
learner to find the most interesting such sequences, maps back the sequences
to the relational database, and then learns a theory on the extended multi-
relational database. The extended database thus contains all primitive relations
and an additional relation that stores temporal patterns for each example.
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Fig. 1. Database Relations(up) and Temporal Patient Events for Patient One(down).
ID is the patient ID, Date is in numeric format, RBC and WBC are blood parameters,
and we show alb, plt and ttp urine exams.

This methodology allows us to explore multi-relational datasets that have
different types of timed data, either sequence data or time-series data. On the
one hand, we can benefit from computationally efficient sequential miners such
as cSpade [6] to find the most predictive sequential patterns. On the other hand,
we still have access to the original data and can take advantage of the flexibility
of Inductive Logic Programming (ILP) to learn in the extended multi-relational
dataset. Indeed, we argue that the first step provides a good insight into the
search space, and may enable XMuSer to perform better than classical ILP based
algorithms in large search spaces. We should observe that the sequence miner
and ILP learning algorithm are decoupled and we can use other highly efficient
algorithms such as CloSpan [5], that find closed sequential patterns.

We evaluate our framework by addressing three classification problems. More-
over, we map each one of three different types of sequential patterns: frequent,
closed or maximal.

In the following section we introduce and evaluate the performance of the
XMuSer algorithm. In the last section we present some conclusions.

2 The XMuSer Algorithm

Our framework has five main steps. In the first phase, if needed, we code the
temporal data into a sequence database. In a second phase, we run a sequence
miner to find all predictive sequential patterns. In a third phase, we sort the
predictive sequential patterns using the chi-square statistic. In a fourth phase,
we select the top-k most interesting sequential patterns and, for each example
in the target table, we built a relation where the example is characterized by
presence or absence of the k most interesting sequential patterns. Last, we learn
a theory on the enlarged database, where enlarged database is the union of the
original database with the new sequence relation.

Next, we explain each one of the major components in self-contained subsec-
tions. Throughout, we follow an illustrative example, a classification problem,



at Figure 1. This example is inspired on the relational Hepatitis dataset. The
example has three tables registering the follow-up of two patients. One of the
tables is the target table, named Patient, where each record describes each pa-
tient, identified by a masked ID, and registers the class of each patient. The
other two tables are fact tables registering timed blood analysis and urinalysis
examinations.

Data Coding. Our algorithm takes a multi-relational dataset as input, rep-
resented as a database of Prolog facts. To explore the richness of this repre-
sentation, and namely temporal patterns, we introduce a strategy that con-
verts multi-relational timed data into an amenable sequence database. First,
we find all relations that have temporal records. Second, we sort the records
in these relations by time order. We thus obtain a chronological sequence of
multiple events for each example. Figure 1 shows patient one event sequence.
The sequence includes a sequence of blood and urine analysis. Third, we build a
temporal attribute-value sequence for each example. In this new sequence each
itemset corresponds to all records registered at a given date/time. We have,
for patient one, (plt=high) (rbc=high, wbc=normal, alb=normal, ttp=normal)
(alb=normal) (rbc=high, wbc=high). We then define a one-to-one coding map
f : Attributes × V alues −→ N. This mapping associates an unique number to
each attribute-value pair. In the example, we use the map to code the attribute-
value sequence into an integer number sequence. The mapping assumes discrete
attributes (continuous attributes will be discretized beforehand). In Table 1 we
present the transformed sequence database registering the coded sequence of pa-
tients one and two and four other patients, that were not present in the example
database at Figure 1, but will be useful in the subsequence of the algorithm
description. In this table, each sequence tuple corresponds to an example in the
target table and each itemset in the sequence corresponds to all one-time events.
In the third column we show the labels of each sequence, we have two classes,
class a and b. In the example, we define the one-to-one map as f(rbc, low) = 1,
f(rbc, normal) = 2, f(rbc, high) = 3, f(wbc, low) = 4, f(wbc, normal) = 5,
f(wbc, high) = 6, f(alb, normal) = 7, f(ttp, normal) = 8, f(plt, high) = 9 and
patient one sequence of events is thus coded as (9) (3 5 7 8) (7) (3 6).

Finding Frequent Sequential Patterns.When mining the sequence database
we aim at finding interesting patterns that augment the descriptive power of the
raw data and that are useful to build highly accurate models.

Table 1. Sequence Database

ID Sequence Class

1 (9) (3 5 7 8) (7) (3 6) a

2 (3 4) (7) b

3 (1 5) (4) b

4 (3 5) (7) a

5 (5 8) (7) a

6 (4) b



Table 2. Predictive Sequential Patterns found

Support Value

Rank Seq. Patt. Overall Class a Class b Chi-square

1 (5)(7) 3 3 0 6.000

2 (4) 3 0 3 6.000

3 (3 5) 2 2 0 3.000

4 (5) 4 3 1 3.000

5 (7) 4 3 1 3.000

6 (3)(7) 3 2 1 0.667

7 (3) 3 2 1 0.667

Table 3. Sequence Relation

ID S1 S2 S3

1 1 0 1

2 0 1 0

Our first step is to run a sequence miner on the sequence database to find
predictive frequent sequences, the ones having, in at least one class partition, a
support value equal or higher than a user defined threshold. Following the illus-
trative example, if we set the support value to 50% and run cSPADE algorithm
to find sequential patterns available in the sequence database (see Table 1), we
get the sequential patterns presented in Table 2. cSPADE algorithm outputs the
overall support of each pattern and the support of each pattern in each class
partition. We slightly modify cSPADE to compute and output a measure of in-
terest for each pattern. Here, we set cSPADE to output the chi-square statistic
for each pattern.

Considering the nature of the sequence miner, the type and the dimension of
problem being addressed we usually get a large number of sequential patterns
and some of these patterns can be redundant and/or uninteresting.

Sort Sequential Patterns. To select the most interesting patterns and
class correlated patterns to build the final classification model, we sort all the
sequential patterns found using a metric (see Table 2). In this example, we sort
the patterns according to the chi-square statistic value. The k most interesting
patterns (the top ones) will be used to build the final classification model.

Mapping Back Interesting Sequences. In order to best explain our pro-
cedure we present Table 3, the sequence relation that was obtained by applying
our mapping procedure on the example data. This table has four attributes, the
example ID and the three most interesting sequences (the top three patterns of
Table 2). If we get ties we select the longest pattern.

We develop a mapping strategy that maps each one of the selected sequential
patterns into a Boolean attribute and, portray this mapping as a new table.
This new table, named sequential relation, has an entry for each example on the
target table and has k+1 attributes: the top-k most interesting features and the
example ID, usually the target table primary key. To compute the value of each
attribute we use the information coded in the sequence database and subsequence
definition. If the sequence associated with the new attribute is a subsequence of
the example sequence at the sequence database, the new attribute takes value
one. Otherwise, it takes the value zero.

Learning a Theory. In this last step we learn a theory. We take all the
primitive tables and the new sequential relation as input to an ILP algorithm,
such as Aleph [4], to learn a set of clauses. These clauses can therefore use the
primitive tables and the new one, that encodes the time information.



Table 4. Mean Generalization Accuracy: XMuSer against Stand-alone Aleph

λ XMuSer (With Aleph)
Stand-alone Aleph

Wilcoxon p-value
λ freq. clo. max. freq. clo. max.

Hepatitis Subtype
0.9 0.78(0.10) 0.78(0.10) 0.78(0.10)

0.78(0.11)
0.539 0.539 0.919

0.8 0.79(0.10) 0.80(0.10) 0.79(0.08) 0.083 0.020 0.322

Hepatitis Fibrosis
0.9 0.64(0.04) 0.63(0.05) 0.63(0.05)

0.58(0.09)
0.032 0.032 0.105

0.8 0.58(0.11) 0.60(0.08) 0.62(0.06) 0.760 0.919 0.262

Financial
0.9 0.74(0.06) 0.74(0.06) 0.74(0.05)

0.71(0.07)
0.041 0.041 0.020

0.8 0.77(0.06) 0.77(0.06) 0.75(0.06) 0.008 0.008 0.041

Following the illustrative example, an example of a clause we can find is: pa-
tient info(A,B,C,a):- blood analysis(A,D,high,normal), urinalysis(A,E,plt,high),
sequence relation(A,1,F,G).

This clause has the predicate patient info at the head, and a call to the
predicate blood analysis, the predicate urinalysis and the predicate associated
with the sequence relation, predicate sequence relation, as the clause body. The
clause explains (or covers) patient number one in the database.

Experimental evaluation. We evaluated our algorithm in two real-life
datasets obtained from the PKDD data-mining competitions4, the Hepatitis
dataset and the Financial dataset. We experimented three classification prob-
lems: Hepatitis Subtype and Hepatitis Fibrosis Degree (we translate this multi-
class problem into a binary problem, see [3]), in the Hepatitis dataset, and the
prediction of successful loans, in the Financial dataset.

Throughout, we used cSPADE algorithm to find all frequent and predictive
sequences and Aleph algorithm to learn a logical theory. We applied the following
predefined parameter configuration: we map the 5 most interesting sequential
patterns, the top-5, and we test two different support values λ = 90% and
λ = 80%. For comparison purposes we also run the stand-alone Aleph algorithm
to solve each problem. Furthermore, besides presenting XMuSer results using all
sequential patterns found by cSPADE, we present results using two subsets of
sequential patterns, the closed set and the maximal set. The closed and maximal
sequences were obtained using a naive post-processing strategy. We evaluate our
framework using a ten-fold cross-validation procedure and compute: the mean
generalization accuracy and standard deviation. We also compute the Wilcoxon
hypothesis test p-value. We use the same background knowledge and bias when
running the Aleph algorithm, either as the last component of XMuSer or as stand-
alone. The major difference is that in XMuSer we introduce an extra relation, the
sequence relation. The bias is relatively simple, relying on the predefined tables
available in the enlarged database.

We address the three problems using the original multi-relational datasets
without performing preprocessing steps, such as balancing the datasets. In Ta-
ble 4 we present experimental results for λ = 90% and λ = 80%. Lower values
of λ cause a memory explosion. Further experiments with other values of k do
not show significant changes in performance.

4 see http://lisp.vse.cz/challenge/CURRENT/



We believe that we obtained very good results. In all three classification
problems, XMuSer obtained better or equal results than the stand-alone Aleph
algorithm. In each one of the three problems we get, for some support value, a
significant win over the stand-alone Aleph algorithm, at a confidence level 5%.
Moreover, the best results were obtained when we map a subset of the frequent
or a subset of the closed sequential patterns. Furthermore, we run XMuSer by
mapping a different number of patterns, other than 5, and we can say that the
best results were obtained when we map less than 25 sequential patterns. These
results are among the best that we could find in related work (see [2]).

3 Conclusions

We presented an optimized version of XMuSer, a multi-relational framework that
explores temporal information stored in a database. The methodology is an effec-
tive alternative to previous ILP-based approaches that incorporate timed data
in the final first-order theory by either using time aggregation strategies [1], like
time window aggregation, or by refining ILP clauses or predicates that explicit
explore time. Differently from these approaches, our methodology, can take ad-
vantage of the strengths of sequential miners to explore efficiently any kind of
timed data.

Moreover, we develop a new methodology to translate any multi-relational
timed database into a sequence database and that we develop a new strategy to
explore efficiently timed patterns in an ILP framework. Our ILP based frame-
work gains both from the descriptive power of the ILP algorithms and the effi-
ciency of the sequential miners.
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