
Efficient homomorphism-free enumeration of
conjunctive queries

Jan Ramon1, Samrat Roy1, and Jonny Daenen2

1 K.U.Leuven, Belgium,
Jan.Ramon@cs.kuleuven.be, Samrat.Roy@cs.kuleuven.be

2 University of Hasselt, Belgium,
Jonny.Daenen@uhasselt.be

Abstract. Many algorithms in the field of inductive logic programming
rely on a refinement operator satisfying certain desirable properties. Un-
fortunately, for the space of conjunctive queries under θ-subsumption,
no optimal refinement operator exists. In this paper, we argue that this
does not imply that frequent pattern mining in this setting can not be
efficient. As an example, we consider the problem of efficiently enumer-
ating all conjunctive queries of bounded treewidth and show that it can
be achieved with polynomial delay.

1 Introduction

Many algorithms in the fields of machine learning and data mining consist of a
component enumerating all hypotheses or patterns of a search space in a certain
order, and a component further investigating these hypotheses. For example, a
frequent pattern mining algorithm typically has a component generating candi-
date patterns in the pattern language and a component checking whether the
candidates are frequent.

The computational cost of both components depends on amongst other the
matching operator chosen. The majority of Inductive Logic Programming algo-
rithms uses theta subsumption, which is equivalent to homomorphism between
graphs for datalog. Some algorithms also employ the so-called object identity
matching operator, which is equivalent to subgraph isomorphism for datalog.

While the complexity of deciding subgraph homomorphism is lower than de-
ciding subgraph isomorphism, enumerating patterns under isomorphism is eas-
ier and better understood. Indeed, deciding whether a graph H is subgraph
isomorphic to a graph G is NP-complete, even if both G and H belong to
the restricted class of graphs with bounded treewidth. By contrast, if H has
bounded treewidth, one can decide in polynomial time whether a graph H
is subgraph homomorphic to a graph G, without imposing any restrictions
to G [9]. As far as enumeration is concerned, isomorphism-free enumeration
of patterns has been studied extensively [4, 13, 12], while homomorphism-free
enumeration of graphs is more difficult because larger graphs may be sub-
graph homomorphic to smaller graphs. For example, for any n > 1, the query

p(X1, X2), p(X2, X3), . . . , p(Xn−1, Xn) is more general than the short query p(X,X).
One can even show that an optimal refinement operator does not exist, even for
simple classes of patterns [10]. These difficulties were one of the reasons why
after the initial homomorphism-based pattern miners (e.g. the Warmr system
[2]), attention shifted to isomorphism-based graph mining [14, 8, 11, 7].

However, there have been proposed an increasing number of applications
featuring large networks of millions of nodes, such as social networks, economic
networks, traffic networks, chemical interaction networks and concept networks.
For such applications, subgraph isomorphism is intractable outside a very re-
stricted class of patterns. For this reasons, we argue that it may be important
to revisit homomorphism based pattern mining, since in that setting complexity
only depends polynomially on the size of the network and only moderately on
the size of the mined patterns.

In this paper, we show that despite the negative theoretical results about
the non-existence of certain types of refinement operators, it is still possible to
enumerate equivalence classes of conjunctive queries under θ-subsumption (ho-
momorphism) with polynomial delay. Our contribution is twofold. First, we point
out a theoretical argument indicating that most of the solutions of an algorithm
for isomorphism-free enumeration of graphs will also be solutions for the prob-
lem of homomorphism-free enumeration. Second, we provide a polynomial delay
algorithm listing all conjunctive queries of bounded treewidth.

The remainder of this paper is structured as follows. After Section 2, where
we review some basic concepts, definitions and earlier results. We first consider
the general case and discuss in Section 3 an algorithm for homomorphism-free
listing of patterns. Next, in Section 4 we consider the special case of bounded
treewidth patterns and propose a deterministic algorithm. Finally, Section 5
provides some further perspectives and concludes.

2 Preliminaries

2.1 Basic graph theory concepts

In the technical part of this paper, we will consistently use graph terminology.
In this subsection, we will first review a number of basic concepts.

A (vertex-labeled) graph is a triple G = (V,E, λ) where V is a set of ver-
tices, E ⊆

{
{u, v} | u, v ∈ V

}
is a set of edges, and λ is a labeling function

λ : V → Σ on some alphabet Σ.

We also denote the vertices of a graph G with V (G), the edges with E(G),
and the labeling function of G with λG. A vertex v ∈ V is incident with an edge
e ∈ E if v ∈ e. The degree d(v) of a vertex v is the number of edges incident
with v. For a graph G, the (maximum) degree of G is ∆(G) = maxv∈V (G) d(v).

G′ is a subgraph of G, denoted G′ ⊆ G, if V (G′) ⊆ V (G) and E(G′) ⊆
E(G). If G′ ⊆ G and E(G′) =

{
{x, y} ∈ E(G) | x, y ∈ V (G′)

}
, then G′ is an

induced subgraph of G.

A simple graph G is a graph which does not have self-loops, i.e. ∀{x, y} ∈
E(G), x 6= y or parallel edges. For this paper, unless explicitly stated otherwise,
we assume all graphs to be simple.

A path from a vertex v0 to a vertex vn in a graph G is a sequence of pairwise
distinct vertices (vi)

n
i=1 such that ∀i, 0 ≤ i < n, {vi, vi+1} ∈ E(G). A tree is a

graph where there is exactly one path between each pair of vertices.

For two graphs G and H, G is called isomorphic to H, written as G∼=iH,
if there exists a bijective mapping π : V (G) → V (H), such that for any u, v ∈
V (G), {u, v} ∈ E(G)⇔ {π(u), π(v)} ∈ E(H) and λ(u) = λ(π(u)). π is called an
isomorphism from G to H. For two graphs G and H, G is called homomorphic
to H, written as G∼=hH, if there is a mapping ϕ : V (G) → V (H) such that
∀u, v ∈ V (G), (u, v) ∈ E(G) ⇒ (ϕ(u), ϕ(v)) ∈ E(H) and ∀v ∈ V (G), λ(u) =
λ(ϕ(u)). ϕ is called an homomorphism from G and H. An isomorphism π :
G → G, is called an automorphism of G. A homomorphism, ϕ : G → G is
called an endomorphism of G. A graph G is asymmetric if it does not have
any automorphism except for the identity. A graph G is called a core if every
endomorphism of G is also an automorphism of G.

If a graph H is isomorphic to a subgraph of a graph G then H is called
subgraph isomorphic to G, denoted H �i G. Similarly, if H is homomorphic
to a subgraph of G then H is called subgraph homomorphic to G and it is
denoted by H �h G.

A tree-decomposition of a graph G is a pair (X,T) where T = (I, F) is
a tree and X = {Xi|i ∈ I} is a family of subsets of V (G), called bags, one for
each node of T , such that

– ∪i∈IXi = V .

– for all edges (v, w) ∈ E, there exists an i ∈ I with v ∈ Xi and w ∈ Xi.

– for all i, j, k ∈ I: if j is on the path from i to k in T , then Xi ∩Xk ⊆ Xj .

The width of a tree decomposition (X,T) is defined as: maxi∈I |Xi| − 1 .
The treewidth of a graph G is the minimum width over all tree decompositions
of G.

2.2 Refinement operators

Let ≤ be a partial order on a set L of patterns, and let ≡ be the corresponding
equivalence relation. For the class of graphs patterns, examples of such partial
orders are �i and �h, the corresponding equivalence relations being ∼=i and ∼=h.
Let > = min(L) be the top element of L. A refinement operator ρ is a function
mapping every element x ∈ L on a set ρ(x) ⊆ L such that ∀y ∈ ρ(x), x ≤ y. We
denote ρ1 = ρ, ρn = ρ ◦ ρn−1 and ρ∗ = ∪iρi A refinement operator ρ is called
finite iff for every A ∈ L, ρ(A) is finite. ρ is called globally complete iff for
every A ∈ L, there is an A′ ∈ ρ∗(>) with A′ ≡ A. ρ is called optimal if ρ is
locally finite, globally complete and for all A1, A2 ∈ ρ∗(>), there exists exactly
one A′ such that A1 ∈ ρ∗(A′) ∧A2 ∈ ρ∗(A′);

2.3 Complexity notions

An algorithm which lists solutions s1, ..., sn of some problem is said to run with
polynomial delay if the time before printing s1, the time between printing si
and si+1 and the termination time after printing sn is bounded by a polynomial
in the size of the input.

3 The general case

An important problem when enumerating patterns is that we only want to
list one representative of every equivalence class of patterns. In the case of
isomorphism-free enumeration, for every equivalence class of isomorphic graphs
we only want to list exactly one. A typical strategy is to use a canonical form or
canonical way to generate the graph.

For homomorphism-free enumeration, the problem is harder, since two ho-
momorphic graphs do not necessarily have the same size. One strategy is to just
perform isomorphism-free enumeration of graphs, and then filter out those which
are not cores. Two questions arise here. First, what fraction of the graphs will
be rejected because they are non-cores, i.e. what part of the work will be un-
productive in terms of generating representatives of new classes of graphs under
homomorphism? Second, what is the complexity of checking whether they are
cores?

Let us start with the first question. For many properties, either almost all
graphs satisfy the property or almost no graph satisfies the property. This does
not hold for all properties expressible in first order logic [3] but also for many
other properties. In [5], a method is proposed to transform any property which
holds for all graphs into an algorithm listing all graphs satisfying the property
with polynomial delay. It is well-known that almost all graphs are cores [6].
Therefore, we can use the algorithm proposed in [5] to list all core graphs. The
listing itself is possible with polynomial delay, the only additional cost is checking
whether the graphs are cores.

Unfortunately, in general, deciding whether a graph is a core is NP-hard.
Therefore, this filtering strategy would only result in a polynomial delay algo-
rithm for a class of graphs which is both sufficiently large so that almost all
graphs are member of it, but which is at the same time sufficiently restricted to
make it possible to decide whether graphs are cores in polynomial time. We do
not know of such class. Therefore, in the next section, we will consider a more
restricted class and revert to a more specialized algorithm.

4 Bounded treewidth

In this section we will show an algorithm for homomorphism-free listing of
graphs of bounded treewidth. Our method is based on the following construction.
First, we present an algorithm that enumerates with polynomial delay graphs
of bounded treewidth which are not guaranteed to be cores. Second, we prove

that in a consecutive interval of a polynomial amount of enumerated graphs, at
least one will be a core. From these two elements, we can then conclude that the
delay between outputting two core graphs is bounded by a polynomial.

For the efficient isomorphism-free enumeration of bounded treewidth graphs,
we rely on a canonical form for bounded treewidth graphs which is described in
more detail in [1]. Using an extension of the standard tree enumeration methods,
we can achieve an algorithm for isomorphism-free listing of all bounded treewidth
graphs with delay O(nw+3) where n is the number of vertices of the graphs and
w is the maximal treewidth. In particular, we extend graphs from the rightmost
path of their canonical tree decomposition. We only start a new branch in the
tree decomposition of core graphs. If a graph is extended such that it is not a
core anymore, then this branch is continued until the graph is a core again.

Checking whether a graph of bounded treewidth is a core is possible in poly-
nomial time. Therefore, we now turn towards the remaining question whether a
sufficient fraction of the enumerated patterns will be cores. Therefore, we prove
the following lemma:

Lemma 1. Let G be a connected graph with vertex labels from an alphabet Σ
with |Σ| ≥ 3, and let (T,B) be a tree decomposition for G of width at most
w ≥ 2. Let z be a node of T and let Z = B(z) be the bag of z. Assume that
all endomorphisms of G mapping all elements of Z on themselves are automor-
phisms of G. Let ρmz (G) be the set of all connected supergraphs P of G such that
|V (P)|−|V (G)| ≤ m, P has treewidth w and ∀{v, w} ∈ V (P), v ∈ V (P)\V (G)⇒
w ∈ (V (P) \V (G))∪Z. Then, if m ≥ |V (P)|2/ log(|Σ|− 1) at least one element
of ρmz (G) is a core.

Proof (sketch). Let Z = {v1, v2, . . . v|Z|} for some arbitrary ordering of the
vertices in Z. Let V+ = v|Z|+1, v|Z|+2, . . . v|Z|+m be new vertices. Let E+ ={
{vi, vj} | (vi, vj ∈ V+ ∪ E) ∧ |i − j| ≤ w

}
. Now consider the set of all graphs

P with V (P) = V (G) ∪ V+ and E(P) = E(G) ∪ E+ where the vertices in
V+ get assigned labels from Σ such that for all 1 ≤ i ≤ |Z| + m − (w + 1),
λ(vi) 6= λ(vi+w+1). This is a strict subset of ρmz (G).

Let P [V+] be the subgraph of P induced by V+. From the construction, it
follows that any endomorphism of P will map P [V+] on an isomorphic copy of
P [V+]. There are at most |V (P)|2 different possible images of P [V+] under such
endomorphism. If (|Σ| − 1)m ≥ |V (P)|2, then for at least one of the (|Σ| − 1)m

considered graphs, all endomorphisms must map V+ on itself, and hence Z on
itself. This graph will therefore be a core. ut

Several of the assumptions in the lemma are only here to keep the proof
simple. We can conclude that at least one of every O(|V (G)|2) refinements of a
pattern will be a minimum size representative of its homomorphism class. Note
that although it is possible that not all of these refinements are in canonical
form, the pruning of these does not affect the polynomial delay result.

5 Conclusions

In this paper we presented methods for the homomorphism-free enumeration
of graph patterns. Such methods are important as a first step towards the ef-
ficient mining of frequent conjunctive queries in large networks. We argue that
despite the existing negative results, homomorphism-free enumeration may still
be possible efficiently for broad classes of graphs such as the class of all bounded
treewidth graphs.

In future work, we want to improve our results. In particular, we are inter-
ested in the question whether one can mine with polynomial delay all conjunctive
queries which are frequent with respect to some given data set. This problem is
harder than the one tackled in the current paper, as it is possible that a fraction
of the enumerated patterns is not frequent and hence must be discarded.

References

1. J. Daenen. Isomorfvrije generatie van een contextvrije, geconnecteerde graaftaal
met begrensde graad. Technical report, Universiteit Hasselt, 2009. In Dutch,
available from the author.

2. L. Dehaspe and H. Toivonen. Discovery of frequent datalog patterns. Data Mining
and Knowledge Discovery, 3(1):7–36, 1999.

3. R. Fagin. Probabilities on finite models. J. of Symbolic Logic, 41(1):50–58, 1976.
4. L.A. Goldberg. Efficient algorithms for listing unlabeled graphs. Journal of Algo-

rithms, 13(1):128–143, 1992.
5. L.A. Goldberg. Polynomial space polynomial delay algorithms for listing families

of graphs. In Proceedings of the twenty-fifth annual ACM symposium on Theory of
computing (STOC’93), pages 218–225, New York, NY, USA, 1993. ACM Press.

6. P. Hell and J. Nestril. Graphs and homomorphisms. Oxford University Press, 2004.
7. Tamás Horváth and Jan Ramon. Efficient frequent connected subgraph mining

in graphs of bounded tree-width. Theoretical Computer Science, 411:2784–2797,
2010.

8. A. Inokuchi, T. Washio, and H. Motoda. Complete mining of frequent patterns
from graphs: Mining graph data. Machine Learning, 50(3):321–354, 2003.

9. Jiff Matousek and Robin Thomas. On the complexity of finding iso- and other
morphisms for partial k-trees. Discrete Mathematics, 108:343–364, 1992.

10. Siegfried Nijssen and Joost Kok. There is no optimal, theta-subsumption based
refinement operator. Personal communication.

11. Siegfried Nijssen and Joost N. Kok. A quickstart in frequent structure mining can
make a difference. In Proceedings of the Tenth ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining (KDD), pages 647–652, 2004.

12. Christophe Paul, Andrzej Proskurowski, and Jan Arne Telle. Generating graphs
of bounded branchwidth. In Proceedings of the 32nd International Workshop on
Graph Theoretical Concepts in Computer Science, volume 4271 of Lecture Notes
in Computer Science, pages 206–216, 2006.

13. J. Ramon and S. Nijssen. Polynomial delay enumeration of monotonic graph
classes. Journal of Machine Learning Research, 10:907–929, 2009.

14. Xifeng Yan and Jiawei Han. gSpan: Graph-based substructure pattern mining. In
Proceedings of the 2002 IEEE International Conference on Data Mining (ICDM
2002), pages 721–724, Japan, 2002. IEEE Computer Society.

