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Abstract. Recently, there has been an increasing interest in generative
models that represent probabilistic patterns over both links and attributes.
An effective structure learning technique has been to upgrade propositional
Bayes net learning for generative relational models. A problem with apply-
ing Bayes net methods to learn recursive rules is that they lead to cyclic
dependencies, which violates the acyclicity constraint of Bayes nets. In this
paper we present a new approach to learning directed relational models
which utilizes two key concepts: a pseudo likelihood measure that is well
defined for recursive dependencies, and the notion of stratification from logic
programming. Emprirical evaluation compares our approach to learning
recursive dependencies with undirected models (Markov Logic Networks).

1 Introduction

An important research topic for learning with relational data is the discovery of gen-
erative models that represent probabilistic patterns over both links and attributes.
An effective structure learning technique has been to upgrade propositional Bayes
net learning for generative relational models [8,4,14,5,7]. In a first-order model,
the same predicate may have different instances with different logical variables. This
expressive power allows the model to elegantly represent recursive dependencies
using Horn clauses. For example, whether person a smokes may be predicted
by the smoking habits of a’s friends, represented by the rule Smokes(X) +
Smokes(Y), Friend(X, Y), which expresses a recursive dependency of the Smokes
predicate on itself. We address three key difficulties for learning recursive dependen-
cies. (1) The repetition of predicates causes additional complexity in learning if each
predicate instance is treated as a separate random variable since they behave the
same statistically (e.g., Smokes(X) and Smokes(Y)). (2) A well-known difficulty for
Bayes net learners is that recursive dependencies lead to cyclic dependencies among
ground facts [14, 2,17]. The cycles make it difficult to define a model likelihood func-
tion for observed ground facts, which is an essential component of model selection
techniques. (3) A related problem is that defining valid probabilistic inferences in
cyclic models is difficult. This paper describes a new approach to learning directed
graphical generative models of relational data that include recursive dependencies.

Approach. We employ Parametrized Bayes nets (PBN) [13] because they are a
relatively straightforward extension of Bayes nets for relational data. Our approach
and results apply to other directed relational models as well. (1) To address du-
plicate predicates, we propose a new normal form for stratified PBNs that adds
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constraints on edges for different instances of the same predicate. A Parametrized
Bayes Net is stratified if there is some ordering of the predicates such that the
predicate that appears in a parent node is the same as that in the child node or
comes before it in the ordering. We provide a theorem that for stratified PBNs,
the normal form restriction involves no loss of expressive power.

(2) To define a model likelihood function for Bayes net search, we utilize the
recent relational Bayes net pseudo likelihood measure [15]. The recent efficient
learn-and-join algorithm [8] searches for models that maximize the pseudo likelihood.
We show how the learn-and-join algorithm can be adapted to exploit the normal
form constraints for efficient structure learning.

(3) For inference, to avoid cycles in the ground model, we convert our learned
Bayes nets to an undirected model using the standard moralization procedure.
Markov Logic Networks (MLNs) are a prominent relational model class that can
learn and reason with recursive dependencies [2]. The moralization approach
approach combines the efficiency and scalability of Bayes net learning with the
high-quality inference procedures of MLNs.

In our test datasets, our structure learning method is orders of magnitude faster
than state-of-the art MLN learners, and the learned models provide substantially
more accurate predictions.

Paper Organization. We review the relevant background and define our notation.
We describe the normal form extension of the learn-and-join algorithm. We then
evaluate the ability of the extended algorithm to learn autocorrelations, compared
to Markov Logic Network learner.

Contributions. The main contributions may be summarized as follows. (1) A
new formal form theorem for Parametrized Bayes nets that addresses redundancies
in modelling autocorrelations. (2) An extension of the learn-and-join algorithm
for learning Bayes nets that include autocorrelations.

2 Related Work.

Adaptations of Bayes net learning methods for relational data are presented in [8,4,
14,5,7]. Our algorithm is an extension of the learn-and-join method [8], which is a
lattice-search that maximizes the relational Bayes net pseudo-likelihood score [15].
Issues connected to learning Bayes nets with recursive dependencies are discussed in
detail in [14]. Early work on this topic required additional constraints to ensure the
acyclicity of the ground Bayes net model [5,7]. The generalized order-search of Ra-
mon et al. instead resolves cycles by learning an ordering of ground atoms. A basic
difference between this paper and generalized order search is that we focus on issues
at the predicate level. Our algorithm can be combined with generalized order-search
as follows: First use our algorithm to learn a Bayes net structure at the predi-
cate/class level. Second carry out a search for a good ordering of the ground atoms.
We leave this option for future work. The moralization approach of performing
inference by converting a directed model to an undirected one is due to [8].
Stratification is a widely imposed condition on logic programs, because it
increases the tractability of reasoning in an LP with a relatively small loss of
expressive power. Our definition is essentially the same as the definition of local
stratification in logic programming [1]. The difference is that that levels are as-
signed to predicates/functions rather than ground literals, so the definition does
not need to distinguish positive from negative literals. In the case where every
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Fig. 1. A Parametrized Bayes Net and its grounding for two individuals a and b. The
double arrow <+ is equivalent to two directed edges.
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predicate appears in only one node in the PBN graph, stratification is equivalent
to disallowing cycles in the graph. Related ordering constraints appear in the
statistical-relational literature [3,5].

3 Background and Notation

Parametrized Bayes nets are a basic statistical-relational model; we follow the
original presentation of Poole [13]. A functor is a function symbol or a predicate
symbol. In this paper we discuss only functors with a finite domain of possible
values. A parametrized random variable or functor node is of the form
f(Xq,..., X)) = f(X) where f is a functor and each first-order variable X is
of the appropriate type for the functor. We assume that the variables X; are
distinct. A Bayes net structure is a directed acyclic graph (DAG) G, whose
nodes comprise a set of random variables. A Bayes net (BN) is a BN structure
with conditional probability parameters. A Parametrized Bayes Net is a Bayes
net whose nodes are functor nodes. A ground PBN B is derived from B by
instantiating the variables in the functor nodes in B with all possible constants.
Figure 1 shows a PBN and its grounding. A level mapping assigns to each functor
f in a PBN B a nonnegative integer level(f). B is stratified if there is a level
mapping such that for every edge f(X) — ¢(Y), we have level(f) < level(g).

The (natural) join of two tables is a new table that contains the rows in
the Cartesian products of the tables whose values match on common fields. A table
join corresponds to logical conjunction.

Markov Logic Networks are presented in detail by Domingos and Richard-
son [2]. An MLN is a set of weighted first-order formulas. Bayes net DAGs can
be converted into MLN structures through the standard moralization method
[2, 12.5.3]: connect all spouses that share a common child, and make all edges in
the resulting graph undirected. For each assignment of values to a child and its
parents, add a formula to the MLN.

4 Stratification and the Main Functor Node Format

The functor concept allows different nodes in a PBN to be associated with the
same attribute or relationship, where the difference between the nodes is in their
variable arguments only. This expressive power is essential to represent recursive
dependencies where instances of an attribute/relationship depend on other instances
of the same attribute/relationship. However, it causes additional complexity in
learning if each functor is treated as a separate random variables. Consider for
example the PBN shown in Figure 2 left. If we treat Smokes(X) and Smokes(Y)
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Fig. 2. Two Bayes nets with different predictors for Smokes(X) and Smokes(Y).

as entirely separate variables, BN learning needs to consider additional edges like
Smokes(X) — Cancer(X). However, this edge is redundant because the 1st-order
variables X and Y are interchangeable as they refer to the same entity set. Re-
dundant edges can be avoided if we restrict the model class to the main functor
format, where for each function symbol f (including relationships), there is a main
functor node f(X) such that all other functor nodes f(Y) associated with the
same functor are sources in the graph, that is, they have no parents. The intuition
for this restriction is that statistically, two functors with the same function symbol
are equivalent, so it suffices to model the distribution of these functors conditional
on a set of parents just once. This leads to the following formal definition.

Definition 1. A PBN B is in main functor node form if for every functor f
of B, there is a distinguished functor node f(X), called the main functor node
for f, such that every other functor node f(Y), where X # Y, has no parents in B.

The PBN of Figure 1 is in main functor form. The main functors are Friend(X, Y)
for the relationship predicate Friend, and Smokes(Y) for the function symbol
Smokes, and Cancer(Y') for the function symbol Cancer. The PBN of Figure 2
(left) is not in main functor form because we have two functor nodes for Smokes
with nonzero indegree. Our main theorem states that a stratified PBN B can be
transformed into an equivalent PBN B’ that is main functor format. For instance, in
the PBN of Figure 2 left we can first substitute the edge age(X) — Smokes(X) for
the edge age(Y) — Smokes(Y) as in Figure 2 right. In terms of ground instances,
the two PBNs have exactly the same ground graph. We also require that the result
of this transformation must be an acyclic PBN; this will be the case with stratified
PBNSs, which are defined as follows.

Proposition 1. Let B be a stratified PBN. Then there is a PBN B’ in main
functor form such that for every database D, the ground graph B is the same as
the ground graph B'.

We extend the learn-and-join algorithm [8] with the main functor restriction to
accommodate autocorrelations. The learn-and-join algorithm upgrades a single-table
BN learner for relational learning. The basic idea of the learn-and-join algorithm is
that join tables should inherit edges from their subjoins. To illustrate in the PBN
of Figure 1, applying the single-table BN learner to the People table may produce
a single-edge graph Smokes — Cancer. Then we apply the Bayes net learner to
the self-join table J = People x Friend x Friend, with the constraint that the
edge Smokes — Cancer must be included.

A theoretical foundation for the algorithm is the recent relational Bayes net
pseudo likelihood measure [15].The pseudo log-likelihood of a PBN is the expected
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MBN|LSM||LHL MBN|LSM||LHL

Time (seconds)|[12 |1 2941 Time (seconds)|[50 |2 15323
Accuracy 0.85 {|0.44 |/0.47 Accuracy 0.50 {|0.26 |26

CLL -0.8 [[-2.21|[-4.68 CLL -1.05 [[-1.43|[-3.69
Table 1. Results on synthetic data. Table 2. Results on Mondial.

log-likelihood of a randomly selected grounding. This score is well-defined even with
recursive dependencies, because it invokes a random instantiation of the PBN rather
than a complete instantiation with all known individuals. Schulte provides a closed
form for computing the pseudo log-likelihood znc shows that the learn-and-join
algorithm (implicitly) maximizes the pseudo-likelihood [15]. Given a specification
of main functor nodes, it is straightforward to extend the learn-and-join algorithm
by adding as a constraint that only edges pointing into main functor nodes are
allowed. The full paper will contain a complete description with pseudo code.

5 Evaluation

Systems Compared and Metrics. To perform inference, we convert the learned
PBN structure to a Markov Logic structure via moralization, and then apply MLN
parameter learning [8]; this is the MBN method. For each dataset, we evaluated the
learning methods with a 5-fold cross-validation scheme. We compare our method to
the two most recent MLN structure learning algorithms, LHL [9] and LSM [10]. We
use 4 performance metrics: Number of Clauses or Parameters, Runtime, Accuracy
(ACC), and Conditional log likelihood (CLL) [12,9]. ACC and CLL have been used
in previous studies of MLN learning. The CLL of a ground atom in a database
given an MLN is its log-probability given the MLN and the information in the
database. Accuracy is evaluated using the most likely value for a ground atom.
For ACC and CLL the values we report are averages over all predicates.

Ezperiments on synthetic data. We manually created a small dataset (about 1000
tuples) for a University domain [5], including a Friendship relation among students.
The dataset features a strong autocorrelation for the ranking of friends and for
the coffee habits of friends. Table 1 shows the results.

Ezxperiments on real world data. We use the Mondial Database. This dataset
contains data from multiple geographical web data sources [11]. We followed the
modification of [16], and used a subset of the tables and features. Our dataset
contains 4 entity tables, Country, Continent, Economy, Government, where the
latter three are related to Country by many-one relationships, and one relationship
table Borders that relates two countries. Table 2 shows the results.

Both MBN and LSM are fast. The speed of LSM is due to the fact that its
rules are mostly just the unit clauses that model marginal probabilities (e.g.,
intelligence(S, I)) [2]. Neither LHL nor LSM discovered recursive dependencies.
In contrast, the learn-and-join algorithm discovered the following dependencies
which we display using clausal notation (like Bayesian clauses [7]) in Table 5.

6 Conclusion

An effective structure learning approach has been to upgrade propositional Bayes net
learning for generative relational models. We presented a new method for applying
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Database |Recursive Dependency Discovered

University|gpa(X) « ranking(X), grade(X,Y), registered(X,Y), friend(X, Z), gpa(Z)

University|coffee(X) < coffee(Y), friend(X, Y)

Mondial [religion(X) + continent(X), border(X,Y), religion(Y)

Mondial [continent(X) < border(X,Y), continent(Y), gdp(X), religion(Y)

Table 3. Dependencies discovered by the extension of the learn-and-join algorithm.

Bayes net learning for recursive dependencies based on a recent pseudo-likelihood
score and a new normal form theorem. The pseudo-likelihood score quantifies the fit
of a recursive dependency model to relational data, and allows us to efficiently apply
model search algorithms. The proposed normal form eliminates potential redun-
dancies that arise when predicates are duplicated to capture recursive relationships.
In evaluations our structure learning method was very efficient and found recursive
dependencies that were missed by Markov logic structure learning methods.
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