
MC-TopLog: Complete Multi-clause Learning
Guided by A Top Theory

Stephen Muggleton, Dianhuan Lin, and Alireza Tamaddoni-Nezhad

Department of Computing, Imperial College London

Abstract. Within ILP much effort has been put into designing methods
that are complete for hypothesis finding. However, it is not clear whether
completeness is important in real-world applications. This paper uses a
simplified version of grammar learning to show how a complete method
can make a difference to the grammar learning results compared to an
incomplete method. Seeing the necessity of having a complete method for
real-world applications, we introduce a method called >-directed theory
co-derivation, which is sound and complete with respect to the provided
declarative bias. The proposed method has been implemented in the ILP
system MC-TopLog and tested on the grammar learning example. Com-
pared to Progol5, an efficient but incomplete ILP system, MC-TopLog
has higher predictive accuracies, especially when the background knowl-
edge is severely incomplete.

1 Introduction

As first pointed out by Yamaoto [15], hypotheses derivable from Progol [6] are
restricted to those which subsume E relative to B in Plotkin’s sense [12]. Progol’s
incompleteness can be characterized by deriving only single-clause hypotheses.
Therefore we refer to entailment-incomplete methods of this type as single-clause
learning, while entailment-complete methods as multi-clause learning.

Yamamoto uses the learning of the concept of odd-numbers to demonstrate
Progol’s incompleteness. His example involves recursion and mutually depen-
dent predicates (odd and even), making it unclear whether only applications
with these properties might be affected by this incompleteness. To the authors’
knowledge it has not subsequently been demonstrated conclusively that the
incompleteness of single-clause learning noticeably restricts the application of
single-clause learners. It might reasonably be supposed that in real-world appli-
cations learned theories can always be built by sequentially adding single clauses
to explain individual examples.

Since grammar learning is central to language translation software, auto-
mated booking systems and grammar checking for word processes, section 2
uses a simplified version of grammar learning, which is artificially designed and
does not involve recursion or mutually dependent predicates, to show how a com-
plete method can improve the learning results of an incomplete method. This is
further demonstrated via experiments in section 4. More experiments with real-
world applications can be found in [4], where target hypotheses are unknown
for knowledge discovery tasks. The focus of this paper is to introduce a new



2

complete approach called >-directed theory co-derivation(>DTcD). The artifi-
cial example of grammar learning, whose target hypothesis is already known, is
used as a running example for explaining our new approach.
>DTcD extends >DTD (>-directed theory derivation) [5] based on the idea

of constructing common generalisations of multiple examples. Common general-
ization was first introduced in Plotkin’s Least General Generalization(LGG) [11]
and Reynolds’ Least Common Generalization (LCG) [14]. More recent methods
of constructing common generalisations include Golem [8] and ProGolem [10].
However, they all suffer from similar type of incompleteness as in Progol. While
all the existing complete methods (e.g. CF-Induction [2], XHAIL [13], IMPARO [3]
and TAL [1]) use a single example as a seed for constructing generalisation. In
this paper, we refer to methods generalising a single example as solo-generalization,
as opposed to co-generlization that generalise multiple examples together.
>DTD is proved in [5] to be complete for deriving hypotheses from a top

theory. It extends >DHD (>-directed hypothesis derivation) implemented in
TopLog [9], which is incomplete like Progol. That is why the system with >DTD
is named MC-TopLog (Multi-clause TopLog). >DTD and >DTcD correspond
to two different learning modes in MC-TopLog: generalising single example or
multiple examples. Inherited from >DHD in TopLog, both >DTD and >DTcD
are >-directed methods, which use a logic program called the top theory to rep-
resent declarative bias. Compared to mode declarations used in other complete
methods, a top theory has the advantage of encoding a strong declarative bias.
More details about strong declarative biases are given in section 3.1

2 Multi-clause Learning vs. Single-clause Learning

Here we explain why Progol’s incompleteness is characterized by single-clause
learning. A hypothesis H will not be derived by Progol, unless it subsumes an ex-
ample e relative to B in Plotkin’s sense. This condition requires H to be a single
clause, and this clause is used only once in the refutation of the example e. We
define single-clause and multi-clause learning as follows in Definition 1. Accord-
ing to this definition, Yamamoto’s example of learning odd-numbers is a multi-
clause learning task. Because the hypothesis clause odd(s(X)) ← even(X) is
used twice when proving the positive example odd(s(s(s(0)))) with other clauses
in B, therefore deriving such a clause is multi-clause learning even though the
final hypothesis appear to be a single clause.

Definition 1. Suppose N is the number of hypothesised clauses that appear in
the refutation sequence for an example e. If N = 1, then it is single-clause
learning; while it is multi-clause learning, if N ≥ 1.

For the learning problem shown in Fig. 1, to explain the whole set of examples
E, Progol suggests a theory as Hincomplete = {h1, h2, h3}, in which each single
clause is derived from one example. However, a complete method will suggest
a hypothesis Hcomplete = {h4, h5, h6, h7}1, which has a smaller number of liter-
1 At least two of the clauses in Hcomplete are used in the refutation of each positive

examples, thus Hcomplete cannot be derived by an incomplete method.



3

Positive and Negative Examples E:
e1:s([an, unknown, alien, hits, the, house], []).
e2:s([a, small, boy, walks, a, dog], []).
e3:s([a, dog, walks, into, the, house], []).
e4:¬s([dog, hits, a, boy], []).

Hypothesis language L:
Predicates ={s, np, vp, det, noun, verb...}
Variables ={S1, S2, S3, ...}
Constants ={a, the, ...}

Background Knowledge B:

b1:np(S1, S2)← det(S1, S3), noun(S3, S2).
b2:vp(S1, S2)← verb(S1, S2).
b3:vp(S1, S2)← verb(S1, S3), prep(S3, S2).
b4:det([a|S], S). b5:det([an|S], S). b13:det([the|S], S).
b6:noun([dog|S], S). b7:noun([boy|S], S).
b8:noun([house|S], S). b9:noun([alien|S], S).
b10:verb([hits|S], S). b11:adj([small|S], S).
b12:prep([into|S], S).

Part of Hypothesis Space H:
h1:s(S1, S2)← det(S1, S3), S3 = [Word|S4], noun(S4, S5), vp(S5, S6), np(S6, S2).
h2:s(S1, S2)← det(S1, S3), adj(S3, S4), noun(S4, S5), vp(S5, S6), np(S6, S2).
h3:s(S1, S2)← np(S1, S3), S3 = [Word|S4], prep(S4, S5), np(S5, S2).
h4:s(S1, S2)← np(S1, S3), vp(S3, S4), np(S4, S2).
h5:np(S1, S2)← det(S1, S3), adj(S3, S4), noun(S4, S2)
h6:verb([walks|S], S). h7:adj([unknown|S], S). h8:prep([unknown|S], S).
h9:np(S1, S2)← det(S1, S3), prep(S3, S4), noun(S4, S2)

Fig. 1: Grammar Learning Example

als while covers same number of examples, and therefore is more compressive
than Hincomplete. This example shows the potential in real world for a complete
method to improve learning results of an incomplete method.

3 MC-TopLog

A top theory > is the key part of a >-directed method. The following subsections
first introduce top theories, and then explain how to derive a hypothesis using
a top theory, that is, the >DTD algorithm. Finally, we explain the idea of how
to restrict derivable hypotheses to common generalisations using >DTcD.

3.1 Top theories as declarative bias

As a first-order generalisation of mode declarations, which specifies the declar-
ative bias of a learning problem, a top theory is another way to represent the
declarative bias. For example, the top theory in Fig. 2(b) corresponds to the
mode declaration in Fig. 2(a). On the other hand, a top theory can encode a
strong declarative bias that can not be captured by any mode declarations. For
example, knowing that a noun phrase always consists of a noun and a verb
phrase always has a verb provides a strong language bias, which not only tells
what predicates are allowed in the head or body of clauses, but also tells how
they are connected. This information can not be represented by a mode declara-
tion; while it can be encoded by a top theory as in Fig. 2(c). Such a top theory
will avoid deriving clauses like np(S1, S3)← det(S1, S2), adj(S2, S3), which defines
a noun phrase without a noun. More details about top theories are in [9].

3.2 >-directed Theory Derivation (>DTD)

Before a hypothesis H is derived, an example e cannot be explained by B, be-
cause of the missing clauses to be hypothesised. However, with a top theory,
explanations for e are still obtainable according to equation 1. By extracting
the top theories used in the explanations and translating them into their corre-
sponding hypothesis clauses based on equation 2, we can derive hypotheses that



4

modeh(1, s(+wlist,−wlist))
modeh(∗, np(+wlist,−wlist))
modeh(∗, vp(+wlist,−wlist))
modeb(1, noun(+wlist,−wlist))
modeb(1, verb(+wlist,−wlist))
modeb(∗, np(+wlist,−wlist))
modeb(∗, vp(+wlist,−wlist))
modeb(1, det(+wlist,−wlist)) ...

modeh(1, det([const|+ wlist],−wlist))
modeh(1, noun([const|+ wlist],−wlist))
modeh(1, verb([const|+ wlist],−wlist))

(a) Mode Declaration

Ths: s(X, Y )← $body(X, Y ).
Thnp: np(X, Y )← $body(X, Y ).
Thvp: vp(X, Y )← $body(X, Y ).
T bnoun: $body(X, Z)← noun(X, Y ), $body(Y, Z).
T bverb: $body(X, Z)← verb(X, Y ), $body(Y, Z).
T bnp: $body(X, Z)← np(X, Y ), $body(Y, Z).
T bvp: $body(X, Z)← vp(X, Y ), $body(Y, Z).
T bdet: $body(X, Z)← det(X, Y ), $body(Y, Z).
Tend: $body(Z, Z).
Tadet: det([X|S], S).
Tanoun: noun([X|S], S).
Taverb: verb([X|S], S). ...

(b) Top Theory: Weak Declarative Bias

‘

Ths: s(X, Y )← $body(X, Y ).
Thnp noun: np(X, Y )← $body(X, M1), noun(M1, M2), $body(M2, Y ).
Thvp verb: vp(X, Y )← $body(X, M1), verb(M1, M2), $body(M2, Y ).

... (The rest are same as that in Fig. 2(b))

(c) Top Theory: Strong Declarative Bias

Fig. 2: Declarative Bias of Grammar Learning

meet equation 3. The soundness and completeness of >DTD are proved in [5].

B ∧ >H |= e (e ∈ E+) (1)
>H |= H (2)

B ∧H |= e (e ∈ E+) (3)

Example 1. For the learning task in Fig. 1, one of the explanations for e1 using
clauses in > and B is a SLD-refutation sequence R = [¬e1, Ths, T bnp, Thnp noun,
T bdet, b5, T bprep, Taprep(unknown), Tend, b9, Tend, T bvp, b2, b10, T bnp, b1, b13, b8, Tend].
Using the extraction algorithm explained in [5], three derivation sequences can be
extracted from R. They are: D1 = [Ths, T bnp, T bvp, T bnpTend], D2 = [Thnp noun,
T bdet, T bprep, Tend, Tend] and D3 = [Taprep(unknown)]. By applying SLD-derivation
and subsumption to the derivation sequences, H1 = {h4, h8, h9} can be derived.

3.3 >-directed Theory Co-Derivation (>DTcD)

The design of >DTcD is based on the fact that if a theory is common to multiple
examples E, then refutation proofs of each example in E using that common
theory will have the same structure, that is, the proofs are the same except
the instantiations of variables. Those same-structure refutation proofs can be
combined by combining corresponding arguments. It is the combined proof that
forces the co-generalised examples to be proved using the same non-ground rules.
The first step of >DTcD is to combine examples to be generalised together into
a compound goal. Then prove that compound goal using clauses in B and >,
which is similar to that in >DTD.

The next question is how to choose the examples to be generalized together.
Rather than randomly sample a pair of examples as that in ProGolem, >DTcD
start with all examples, while those do not fit are filtered out along the derivation
of a refutation proof. At the end of a refutation, not only a hypothesis is derived,
but also the maximum set of examples that can be explained by that hypothesis.



5

Example 2. For all the positive examples in Fig. 1, the>DTcD method first com-
bines them into a compound example like s([[an,unknown,alien,hits,the,house],[a,

small,boy,walks,a,dog],[a,dog,walks,into,the,house]],[[],[],[]]), and then proves this com-
pound example using clauses in B and >. In this way, we can derive the hypoth-
esis H2 = {h4, h5, h7} that co-generalises examples e1 and e2. While e3 is filtered
out during the derivation of this hypothesis, since the second word ‘dog’ in e3

is known to be a noun, rather than adjective, which does not fit into the com-
pound proof that derives H2. On the other hand, non-common generalisations
are pruned. For example, the hypothesis H1 = {h4, h8, h9} derived when gener-
alising e1 alone is no longer derivable because both e2 and e3 have their second
words known as non-prepositions according to the given background knowledge.

4 Experiments

The null hypotheses to be empirically investigated in the study are: (a) compared
to an incomplete method, a complete method does not derive hypotheses with
higher predictive accuracies. (b) the search space of a co-generalisation method
has the same size as that of a solo-generalisatoin method.

Materials MC-TopLog and Progol5 [7] are the two ILP systems used in the
experiments. The background knowledge B for each learning task is generated
by randomly removing certain number of clauses from the complete theory, and
those left-out clauses form the corresponding target hypothesis. Examples are
similar to those in Fig. 1. All materials used in the experiments can be found at
http://ilp.doc.ic.ac.uk/mcTopLog.

Methods The null hypothesis(a) was investigated by comparing learning
performances of MC-TopLog and Progol5[7] when a randomly chosen subset of
the complete theory were left out. For each size of leave-out, we sampled ten
times and the results were averaged. Leave-one-out cross validation was used to
measure the predictive accuracies. The null hypothesis(b) was studied by com-
paring the search spaces of >DTcD and >DTcD. The search space is measured
by the number of hypothesised theories generated for all positive examples.

Results Fig. 3 show that the predictive accuracies of MC-TopLog is higher
than that of Progol. Their differences in accuracies increase when more clauses
are left-out. While the predictive accuracies of >DTcD are the same as that of
>DTD, so that the two lines overlap. Fig. 4 shows the improvement of >DTcD
over >DTD in terms of efficiency. The solid line denotes the learning mode of
singleEx which applies >DTD to generalize a single example; while the dash
line corresponds to the learning mode of multipleExs which applies >DTcD to
generalize multiple examples together. As shown in Fig. 4, the search space is
reduced by more than half when the learning mode switches from singleEx to
multipleExs. Therefore, the two null hypotheses are both refuted by the results.

5 Conclusions and Future work

The simplified version of grammar learning shows the importance of having a
complete method, even for learning problems without recursion and mutually
dependent predicates. Both >DTD and >DTcD are sound and complete for



6

 50

 60

 70

 80

 90

 100

 110

 50  60  70  80  90  100

P
re

d
ic

ti
v
e 

ac
cu

ra
cy

 (
%

)

Remaining background clauses (%)

MC-TopLog

Progol

Before

Fig. 3: Preditive Accuracies Fig. 4: Comparison of Search Spaces

deriving hypotheses, but >DTcD is more efficient than >DTD, while the im-
provement in efficiency is not a trade-off for its predictive accuracy. We intend to
compare >DTcD to other complete methods like CF-induction in future work.
More experiments on different data sets will be given in the longer version paper.

References

1. D. Corapi, A. Russo, and E. Lupu. Inductive logic programming as abductive
search. In ICLP2010 Technical Communications, Berlin, 2010. Springer-Verlag.

2. K Inoue. Induction as consequence finding. Machine Learning, 55:109–135, 2004.
3. T. Kimber, K. Broda, and A. Russo. Induction on failure: Learning connected

Horn theories. In LPNMR 2009, pages 169–181, Berlin, 2009. Springer-Verlag.
4. D. Lin, J. Chen, H. Watanabe, S.H. Muggleton, and et al. Does multi-clause

learning help in real-world applications? 2011. Submitted to ILP11.
5. Dianhuan Lin. Efficient, complete and declarative search in inductive logic pro-

gramming. Master’s thesis, Imperial College London, September 2009.
6. S.H. Muggleton. Inverse entailment and Progol. New Generation Computing,

13:245–286, 1995.
7. S.H. Muggleton and C.H. Bryant. Theory completion using inverse entailment. In

ILP-00, pages 130–146, Berlin, 2000. Springer-Verlag.
8. S.H. Muggleton and C. Feng. Efficient induction of logic programs. In ALT90,

pages 368–381, Tokyo, 1990. Ohmsha.
9. S.H. Muggleton, J. Santos, and A. Tamaddoni-Nezhad. Toplog: ILP using a logic

program declarative bias. In ICLP 2008, pages 687–692, 2008.
10. S.H. Muggleton, J. Santos, and A. Tamaddoni-Nezhad. Progolem: a system based

on relative minimal generalisation. In ILP09, pages 131–148. Springer-Verlag, 2010.
11. G.D. Plotkin. A note on inductive generalisation. In B. Meltzer and D. Michie,

editors, Machine Intelligence 5, pages 153–163. Edinburgh University Press, 1969.
12. G.D. Plotkin. Automatic Methods of Inductive Inference. PhD thesis, Edinburgh

University, August 1971.
13. Oliver Ray. Nonmonotonic abductive inductive learning. Journal of Applied Logic,

7(3):329–340, 2009.
14. J.C. Reynolds. Transformational systems and the algebraic structure of atomic

formulas. In B. Meltzer and D. Michie, editors, Machine Intelligence 5, pages
135–151. Edinburgh University Press, Edinburgh, 1969.

15. A. Yamamoto. Which hypotheses can be found with inverse entailment? In
N. Lavrač and S. Džeroski, editors, ILP97, pages 296–308. Springer-Verlag, 1997.


	MC-TopLog: Complete Multi-clause Learning Guided by A Top Theory
	Introduction
	Multi-clause Learning vs. Single-clause Learning
	MC-TopLog
	Top theories as declarative bias
	-directed Theory Derivation (DTD)
	-directed Theory Co-Derivation (DTcD)

	Experiments
	Conclusions and Future work


